
LSFA 2017 preface

Preface

This volume contains the papers presented at LSFA 2017: the 12th Workshop on Logical and

Semantic Frameworks, with Applications held on 23-24 September 2017 in Braśılia. LSFA

2017 is a satellite event of the 26th International Conference on Automated Reasoning with

Analytic Tableaux and Related Methods (Tableaux 2017), the 11th International Symposium

on Frontiers of Combining Systems (FroCoS 2017) and the 8th International Conference on

Interactive Theorem Proving (ITP 2017).

LSFA 2017 aims to be a forum for presenting and discussing work in progress, and therefore

to provide feedback to authors on their preliminary research. The proceedings are produced

after the meeting, so that authors can incorporate this feedback in the published papers. Logical

and semantic frameworks are formal languages used to represent logics, languages and systems.

These frameworks provide foundations for formal specification of systems and programming

languages, supporting tool development and reasoning.

There were 23 submissions for LSFA 2017, each of which was reviewed by 3 program com-

mittee members. The committee decided to accept 18 papers, out of which 16 were submited

by the authors for these proceedings.

Many people helped to make LSFA 2017 a success. First, we wish to thank the support we

had from the organisers of the Tableaux+FroCoS+ITP conferences: Cláudia Nalon, Daniele

Nantes, Elaine Pimentel and João Marcos. We thank the CNPq and FAPDF for their financial

support. We would also like to thank Easychair for making the management of this event

very smooth and easy. We are indebted to the program committee members and the external

referees for their careful and e�cient work in the reviewing process. Finally we are grateful to

the authors for submitting their work to LSFA 2017.

September 12, 2017 Sandra Alves

Renata Wassermann

i

LSFA 2017 Program Committee

Program Committee

Sandra Alves University of Porto
Carlos Areces FaMAF - Universidad Nacional de Córdoba
Mauricio Ayala-Rincon Universidade de Brasilia
Veronica Becher Universidad de Buenos Aires
Mario Benevides Programa de Engenharia de Sistemas e Computação

COPPE/Sistemas; Departamento de Ciência da Computação
DCC / Instituto de Matemática IM; Universidade Federal do
Rio de Janeiro UFRJ

Walter Carnielli Centre for Logic, Epistemology and the History of Science –
CLE

Carlos Castro Professor
Kaustuv Chaudhuri INRIA
Marcelo Coniglio University of Campinas
Flavio L. C. De Moura Universidade de Brasilia
Valeria De Paiva University of Birmingham
Santiago Escobar Universitat Politècnica de València
Amy Felty University of Ottawa
Maribel Fernandez KCL
Marcelo Finger Universidade de Sao Paulo
Ichiro Hasuo National Institute of Informatics
Edward Hermann Haeusler PUC-Rio
Delia Kesner Université Paris-Diderot
Bjoern Lellmann TU Vienna
Vivek Nigam Universidade Federal da Paráıba
Jorge Petrucio Viana Universidade Federal Fluminense
Elaine Pimentel UFRN
Jorge A. Pérez University of Groningen
Giselle Reis Carnegie Mellon University - Qatar
Camilo Rocha Department of Electronics and Computer Science, Pontificia

Universidad Javeriana Cali
Simona Ronchi Della Rocca Universita’ di Torino - dipartimento di Informatica
Alvaro Tasistro Universidad ORT Uruguay
Christian Urban King’s College London
Renata Wassermann University of São Paulo

1

LSFA 2017 Additional Reviewers

Additional Reviewers

Abriola, Sergio
Cano, Mauricio
Machado, Vitor
Pinto, Darllan
Rodriguez, Ricardo Oscar
Testa, Rafael
Valencia, Frank
Ziliani, Beta

1

Model-Theoretic Conservative Extension

for Definitional Theories

Arve Gengelbacha,1 Tjark Webera,2
a Department of Information Technology

Uppsala University
Uppsala, Sweden

Abstract

Many logical frameworks allow extensions, i. e. the introduction of new symbols, by definitions. Different
from asserting arbitrary non-logical axioms, extensions by definitions are expected to be conservative: they
should entail no new theorems in the original language. The popular theorem prover Isabelle implements
a variant of higher-order logic that allows ad hoc overloading of constants. In 2015, Kunčar and Popescu
introduced definitional theories, which impose a non-circularity condition on constant and type definitions in
this logic, and showed that this condition is sufficient for definitional extensions to preserve consistency. We
strengthen and generalise this result by showing that extensions of definitional theories are model-theoretic
conservative, i. e. every model of the original theory can be expanded to a model of the extended theory.

Keywords: higher-order logic, conservative theory extension, model-theoretic conservativity, definitional
theories, Isabelle

1 Introduction

Among the many different mechanisms for extending theories by definitions, par-
ticularly constant and type definitions [3,12], the one used by the theorem prover
Isabelle [9] had flaws. Isabelle implements polymorphic higher-order logic with ad
hoc overloading. Users extend a theory incrementally by defining constants and
types (or in the case of overloaded constants, by defining constant instances for
previously defined types). A key strength of overloading is the separation of the
declaration of a constant from its instance definitions. However, by combining type
definitions with ad hoc overloading of constants, it was possible to introduce an
inconsistent extension of a theory [6]. For a simple example, consider a theory that
declares a polymorphic constant c↵. Define a type ⌧ by ⌧ ⌘ {True, c

bool

}. Next,
define the constant instance c

bool

by c

bool

⌘ ¬(8x⌧ , y⌧ . x⌧
.

= y⌧). It follows that
c

bool

.

= True iff ⌧ is a singleton iff c

bool

.

= False, a contradiction.

1 Email: arve.gengelbach@it.uu.se
2 Email: tjark.weber@it.uu.se

This paper is electronically published in

Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Gengelbach and Weber

To address this issue, Kunčar and Popescu [6] in 2015 introduced definitional
theories for Isabelle. In the previous example, ⌧ (through its definition) depends
on c

bool

, and c

bool

depends on ⌧ . Definitional theories disallow circular dependencies
between constant and type definitions. Using a novel semantics for higher-order logic
that interprets polymorphic types as macros for families of ground types, Kunčar and
Popescu showed that definitional theories preserve consistency, i. e. every well-formed
definitional theory has a model. Their acyclicity check has since been integrated into
Isabelle [5].

As pointed out in [6], consistency is “a crucial, but rather weak property.” It
merely ensures that definitional theories do not prove False. Extensions by defi-
nitions are generally expected to satisfy a much stronger property known as con-
servativity [1,13]. Conservativity comes in a proof-theoretic (syntactic) and in a
model-theoretic (semantic) flavour. In this paper, we are primarily concerned with
the latter. Roughly, an extension D

0 of a theory D is model-theoretic conservative if
every model M of D can be expanded to a model M0 of D0. (We give a more pre-
cise definition in Section 3.) Note that model-theoretic conservativity immediately
implies consistency: if D has a model, then so does D

0.
We observe that extensions of definitional theories are not model-theoretic con-

servative if we require that the expanded model leaves the interpretation of all
constants that are defined in D unchanged. For a simple counterexample, assume
constants c

bool

and d

bool

, let D := {c
bool

⌘ d

bool

} and D

0 := D [{d
bool

⌘ True}.
Then any model of D that interprets c

bool

as false cannot be expanded (in the above
sense) to a model of D0. The issue here is again that definitions may be provided
separately from declarations: c

bool

depends on d

bool

, but the definition of d

bool

is
only provided in D

0. In general, an extension by definitions in this logic does not
imply an extension of the signature, i. e. the introduction of new symbols.

This example motivates a modified (more permissive) definition of model expan-
sion. Our main contributions in this paper are:

(i) We define a notion of model expansion that is suitable for definitional theories,
where definitions may be provided separately from declarations; and

(ii) we show that extensions of definitional theories are model-theoretic conservative
with respect to this notion of model expansion.

This strengthens and generalises the consistency result previously obtained by
Kunčar and Popescu [6].

The rest of the paper is structured as follows. We introduce the language of
polymorphic higher-order logic and definitional theories in Section 2. Our main
results, including a suitable notion of model expansion and a proof of model-theoretic
conservativity, are presented in Section 3. We give an overview of related work in
Section 4 and conclude with a discussion of future work, in particular with regard
to proof-theoretic conservativity, in Section 5.

2 Background

This section introduces the language of polymorphic higher-order logic (HOL), def-
initional theories and their semantics. We follow the notation and naming conven-

2

Gengelbach and Weber

tions of [6], to which we refer the reader for additional motivation and examples.
We do not describe the deductive system of HOL [10], since it is not relevant in the
context of this paper.

2.1 The Language of Polymorphic HOL

The syntax of polymorphic HOL is that of the simply-typed lambda calculus, en-
riched with a first-order language of types. We fix an infinite set TVar of type
variables, ranged over by ↵, �, and an infinite set Var of (term) variables, ranged
over by x, y.

A signature is a four-tuple (K, arOf,Const, tpOf), where K is a countable set
of symbols called type constructors, and Const is a countable set of symbols called
constants. Each type constructor has an associated arity that is given by the func-
tion arOf : K ! N. Each constant has an associated type that is given by the
function tpOf : Const ! Type, where the set Type, ranged over by �, ⌧ , is defined
inductively as the smallest set such that
• TVar ✓ Type, and
• (�1, . . . ,�n)k 2 Type whenever k 2 K, arOf(k) = n and �1, . . . , �n 2 Type.

For the remainder of this paper, we will assume a fixed signature. Moreover, we
assume that K contains the following built-in type constructors:
• bool of arity 0,
• ind of arity 0,
•) a right-associative type constructor of arity 2.

We also assume that Const contains the following built-in constants:
• ! of type bool) bool) bool,
• .

= of type ↵) ↵) bool, 3

• some of type (↵) bool)) ↵,
• zero of type ind,
• succ of type ind) ind.

We say that a type � is built-in if either � = bool or � = ind or if there exist
types �1,�2 2 Type such that � = �1) �2. Thus any type is built-in whose type
constructor is either ()bool, ()ind or (�1,�2)). For a set of types T ✓ Type let
Cl(T) denote the built-in closure of T , defined inductively as the smallest set such
that
•
T [{bool, ind} ✓ Cl(T), and

•
�1) �2 2 Cl(T) whenever �1, �2 2 Cl(T).

A type substitution is a function ⇢ : TVar ! Type that replaces type variables
by types. We denote the set of type substitutions by TSubst. Generally we extend
a type substitution ⇢ to a function on Type by defining, for each type constructor

3 We use .
= rather than = to avoid confusion with equality in our meta language.

3

Gengelbach and Weber

k 2 K,
⇢

�
(�1, . . . ,�arOf(k))k

�
:=

�
⇢(�1), . . . , ⇢(�arOf(k))

�
k

Let �, �0 2 Type be two types. If there exists a type substitution ⇢ 2 TSubst
such that ⇢(�) = �

0 we write �

0  � and say that �

0 is an instance of �.
The set of typed constants CInst is a subset of the cartesian product Const⇥Type,

where (c,�) 2 CInst if and only if � is an instance of tpOf(c). We use c� as shorthand
notation for the tuple (c,�).

The terms of our language are given by the following grammar, for x 2 Var,
�, �0 2 Type, c� 2 CInst:

t ::= x� | c� | (t�0)� t

0
�0)� | (�x�0

.t�)�0)�

We may write t for t� when there is no risk of ambiguity. We require all terms
to be well-typed, i. e. in t t

0 the type of t0 has to be the same as the argument type
of t. Equality of terms is considered modulo ↵-equivalence. The set of all terms is
denoted by Term.

We extend tpOf to terms by defining tpOf(t�) := �. We say that a term is built-
in if its type is built-in. For a set M of terms (or types), we define M

⇤ to mean the
subset of all non-built-in terms (or types). For example Type⇤ are all built-in types
and CInst⇤ are all built-in constant instances, i.e. all constant instances whose type
is built-in.

We extend type substitutions to terms by defining ⇢(t�) := t⇢(�). We say that t�0

is an instance of t�, written t�0  t�, if �0 is an instance of �.
We define the function types : Term ! P(Type) to collect all types that syntac-

tically occur in a given term. For instance, if K contains a type constructor list of
arity 1 (written in postfix notation), types(c

bool list

) = {bool, bool list}. Likewise, we
define the function consts : Term ! P(CInst) to collect all constant instances that
syntactically occur in a given term.

We say that a type is ground if it contains no type variables. The set of ground
types is denoted by GType. We denote the set of type substitutions that map type
variables to ground types only by GTSubst. A constant instance c� 2 CInst is ground
if its type � is ground. We denote the set of ground constant instances by GCInst.

2.2 Definitional Theories

Definitional theories are theories that consist of definitions a ⌘ b, with a defining
term b on the right-hand side and the name of the introduced constant or type a on
the left-hand side.

As the semantics of definitional theories use the logical constants ‘8’ and ‘9’, we
require that the underlying theory provides axioms for these constants, e. g.

8 .

= �P↵!bool

.(P
.

= (�x.True)),

in a logically equivalent manner like the theory LOG extends the minimal theory of
HOL [10, Section 2.4.2].

We write TV(�) for the set of type variables that syntactically occur in the type
� and extend this to terms: for a term t we abbreviate TV(t) for TV(tpOf(t)).

4

Gengelbach and Weber

Definition 2.1 [Definitional Theory] We call a finite set where each element has
the shape
•
c⌧ ⌘ t with t 2 Term a closed term and TV(t) ✓ TV(⌧), or

•
⌧ ⌘ t with tpOf(t) = �) bool (for a � 2 Type)

(for c⌧ constant, ⌧ a type and t a term) a definitional theory. We say constant
instance definition for c⌧ ⌘ t and type definition for ⌧ ⌘ t.

Definitional theories contain definitions for constant instances which are defined
by a term and definitions of types which are defined by a predicate. The semantics of
⌘ are defined later on. First introduced by [6], certain definitional theories guarantee
consistency. These are the so called well-formed definitional theories, which rely on
orthogonality :

Definition 2.2 [Orthogonal Types and Constant Instances] Let ⌧ 2 Type and � 2
Type be two types.

⌧#� :() 8� 2 Type, ✓ 2 TSubst : ¬(✓(⌧) = � and ✓(�) = �)

We say the types ⌧ and � are orthogonal, ⌧#�, if they have no common type instance
and extend this notion to constant instances: Let c⌧ , d� 2 CInst.

c⌧#d� :() c 6= d or ⌧#�

Likewise, we say c⌧ and d� are orthogonal.
We say a definitional theory D is orthogonal if for all distinct elements
u ⌘ t, u

0 ⌘ t

0 2 D either one is a type definition and the other is a constant defi-
nition, or both are of the same kind and u and u

0 are orthogonal.

We introduce a binary relation on constant instances and types, to represent the
types and constant instances that a definition is depending on, i. e. the types and
constant instances occurring within the right hand side of a definition.

Definition 2.3 [Dependency Relation] Let D be a definitional theory and u, v 2
(CInst [Type)⇤ types or non-built-in constant instances. We define u D v, if one
of the following two conditions hold.
• 9t 2 Term, u ⌘ t 2 D such that v 2 (CInst[Type)⇤ and v occurs in the term t, or
• 9c� 2 CInst⇤ such that v 2 Type⇤, v occurs in � and u = c�

We say u depends on v.

The relation D is subject to the definitional theory D which we omit when
it is implied from the context. We give small examples for the relation: Trivially
c� � holds for all constant instances c� 2 CInst⇤. Assume a theory that defines
an unary type list and a constant map(�)⌧))⌧ list)�list using a constant fold to define
map. Both, map �list and map fold hold.

Definition 2.4 [Type Substitutive Closure] Let R be a binary relation on
(CInst [Type)⇤. We define the type substitutive closure R

which extends the rela-

5

Gengelbach and Weber

tion R to instances of types. Let t, s 2 (CInst [Type)⇤.

s R

#
t :() 9⇢ 2 TSubst, s0, t0 2 (CInst [Type)⇤ : ⇢(s0) = s, ⇢(t0) = t and s

0
R t

0

The previous definitions allow us to introduce well-formed definitional theories.

Definition 2.5 [Well-formed Definitional Theory] For a definitional theory D we
say it is well-formed if it is orthogonal and there is no infinite sequence (ai)i2N ✓
(Type [Const)⇤ such that each two subsequent elements ai and ai+1 are in the
substitutive closure of the dependency relation ai D

#
ai+1 (for all i 2 N).

For a binary relation R, let R

+ denote its transitive closure.

2.3 Models of Definitional Theories

We now define the semantics of definitions in definitional theories and the semantics
of terms to introduce valuations that allow us to evaluate terms to truths.

The meaning of ⌘ depends on the kind of the definition, as defined by [6]:

Definition 2.6 [Semantics of ⌘] Let c⌧ ⌘ t be a constant instance definition, then
we define it to stand for the formula c⌧

.

= t. Let ⌧ ⌘ t be a type definition. We
define it to be the formula

(9x�. t x�)!
9rep⌧)� 9abs�)⌧

(8x⌧ . t(rep x)) ^ (8x⌧ . abs(rep x�)
.

= x�) ^ (8y�. t y ! rep(abs y�)
.

= y�).

The interpretation of a constant instance definition is as expected the identifica-
tion of the constant with the defining term. The interpretation of the type definition
states the existence of an isomorphism of the type ⌧ to a subset of � that is defined
by the predicate t, only if the type-defining predicate t yields a non-empty set.

We define fragments, a tuple of constants and the constants types. The inter-
pretation evaluates terms with respect to the fragment and the model is defined by
the True-evaluating terms.

Let T ✓ GType⇤ and C ✓ GCInst⇤ be sets of types and constants that are non-
built-in such that the types of typed constants are contained in the closure of T .
In this case we call the tuple (T,C) a fragment. For a fragment F we define an
F -interpretation of the fragment as a pair of families I = (([⌧])⌧2T , ([c�])c�2C), that
fulfils the two conditions:

(i) For all types ⌧ 2 T the set [⌧] is non-empty.
(ii) Furthermore to formulate a constraint on the constant instances, we extend

the domains of types to the closure of built-in types of T such that [bool] =
{True,False}, [ind] = N0 and [�) ⌧] = [�] ! [⌧] are satisfied. This gives
meaning to extended family ([⌧])⌧2Cl(T) that extends [·] to built-in types.
Each interpretation of a constant instance c⌧ 2 C satisfies [c⌧] 2 [⌧].

We expand the interpretation of a fragment F = (T,C) to the ground built-in con-
stant instances: logical implication [!

bool)bool)bool

], equality relation [
.

=⌧)⌧)bool

],

6

Gengelbach and Weber

[zero
ind

] as least element in N0 and successor function [succ
ind)ind

]. We denote by
GBIF the set of ground built-in constants for a fragment. In addition we fix an
arbitrary function choice to return one element of the argument set. We define the
interpretation of the function some on functions f : ⌧ ! bool as

[some(⌧)bool))⌧](f) =

(
choice(Af) if Af 6= ; where Af := f

�1({True})
choice([⌧]) otherwise

.

Following this construction we consider the pair of families�
([⌧]⌧2Cl(T)), ([c⌧])c⌧2C[GBIF

�
.

With this setup we can evaluate terms within the fragment F with respect to
its interpretation I. We call a function ⇠ a valuation for a model I if ⇠ : Var

Type

!
[�2Type[�] such that each variable of type � gets assigned a value of type �, i. e.
⇠(Var�) ✓ [�]. Let ValI denote the set of valuations for I. The interpretation can
now be expanded to general terms of fragments. Let t 2 TermF be a term in the
fragment F . We recursively define the function [t] : ValI ! [tpOf(t)] over the
structure of terms.

[x�](⇠) = ⇠(x�)

[c�](⇠) = [c�]

[t1 t2](⇠) = [t1](⇠)([t2](⇠))

[�x�.t](⇠) : [�]! [tpOf(t)], a 7! [t](⇠(x� a))

The latter ⇠(x� a) shall denote a function that takes the value a at x� and oth-
erwise agrees with ⇠. Kunčar and Popescu motivate the correctness of this recursive
definition [6, Lemma 8.5].

For closed terms t of a fragment the valuation [t] does not change for different
variable assignments and hence the function [t] is constant. We assume w. l. o. g.
[t] 2 [tpOf(t)], whenever t is a closed term.

On fragments F1 = (T1, C1) and F2 = (T2, C2) with I1 and I2 as their respective
interpretations we define an ordering as (F1, I1)  (F2, I2), iff T1 ✓ T2, C1 ✓ C2

and [·]I1 = [·]I2
��
T1[C1

, which indeed is a partial ordering. This ordering is bounded
and we call its upper bound total fragment T = (GType⇤,GCInst⇤).

We define a model I to be a model for a formula ' (in symbols I |= '), if the
formula ' is valid with respect to the interpretation in I: [']I = True. If I is a T-
interpretation and ' a polymorphic formula then we denote I |= ' if for all ground
type substitutions ✓ 2 GTSubst : I |= ✓('). Furthermore for sets of formulas E we
define I |= E as: For all ' 2 E it holds I |= '.

One main result of Kunčar and Popescu is that each well-formed definitional
theory has a model [6, Theorem 11] and consequently each such theory is consistent
[6, Theorem 10]. We extend and generalize these results.

3 Results

The counterexample given in Section 1 motivates the need of a finer notion of con-
servative extension involving the dependency relation to avoid inconsistencies intro-

7

Gengelbach and Weber

duced by dependencies.

3.1 Model-theoretic Conservativity

Fix a language L. A theory T

0 in the language L is a model-theoretic conservative
extension of a theory T (in the same language L), if every model for T can be
expanded to a model for T

0. The expansion notion means that no formula of the
theory T changes its validity.

Within the model construction [6, Theorem 11], undefined constant instances
appearing in a term are assigned one value (with choice/some) out of the possible
values, according to the constant’s type. Undefined types, on the other hand, are
interpreted as singletons. These choices in the semantics further propagate to types
and constant instances that depend on or make use of types or constants that have
no definition. These are the interpretations that we want to adjust properly within
the extended model. Accordingly, we decompose a theory D

0 = D [· {u ⌘ t} (with
at least one definition) into two disjoint sets.

Definition 3.1 [Depending Part of a Definitional Theory] Let D0 be a well-formed
definitional theory and � a subset � ✓ D

0. We define the set

D

0
 #+� := {(u ⌘ t) 2 D

0| 9(v ⌘ s) 2 � : u D0#+
v} [�

and call it the �-depending part of D0.

When we extend a theory D by a set of definitions � such that the resulting
theory D

0 := D [� is a well-formed definitional theory, then the �-depending part
of D0 are all definitions of constant instances and types whose interpretations in a
model of D0 change compared to a model of D.

Furthermore in the previous situation the equality D

0 \D0
 #+� = D is equivalent

to stating that no u ⌘ t 2 D is depending on any definitional term introduced by
�. It is possible to use types or constant instances that are not defined as we fixed
the signature, although the introduction of cycles in the definitions in definitional
theories is avoided by the dependency relation.

In case the set � is a singleton � = {u ⌘ t} the �-depending part of D0 can be
formulated simpler:

D

0
 #+{u⌘t} = {(v ⌘ s) 2 D

0|v #+
u} [· {u ⌘ t}.

Remark that the relation #+ is not reflexive, so this is written as a union (of
disjoint sets).

Lemma 3.2 Let D

0 be a well-formed definitional theory and � be a subset. Let
V be the set of types and constant instances V := {u|(u ⌘ t) 2 D

0
 #+�} and

GV :=
S

✓2GTSubst ✓(V). Then F := (GType⇤ \GV,CInst⇤ \GV) is a fragment, and it
is the largest fragment such that any term over this fragment is not transitively and
type-substitutively depending on any of the definitions in �.

Proof. We abbreviate the set of ground types and ground constant instances that

8

Gengelbach and Weber

are type instances of the defined term that depend on �:

GT := Type \ GV , GC := CInst \ GV .

Let c� 2 GCInst⇤ \ GC be a ground constant instance of type �. For � to be in
Cl(GType⇤ \GT), there must be at least one type among the non-built-in types that
occurs in �, that is in GT . But as c� 62 GC any of the types in types⇤(�) can be
transitively type-substitutively depending on u. The maximality is immediate. 2

Theorem 3.3 (Model-theoretic conservativity) Let M be a model for a well-
formed definitional theory D, i. e. M |= D. If the extension of D by a definition
D

0 := D[· {u ⌘ t} is a well-formed definitional theory, then there exists a model M0

of the extended theory D

0, such that M and M0 coincide on the interpretations of
all terms that do not contain any of {✓(v)|✓ 2 GTSubst, (v ⌘ s) 2 D

0
 #+{u⌘t}}.

Proof. We decompose the set of definitions D0 into two parts, first D0
u := D

0
 #+{u⌘t}

which is type-substitutively and transitively depending on u or the definition of u
itself, and second its complement in D

0. We recursively define the interpretation [·]M0

where M0 will denote the model for D

0, and therefore introduce abbreviations for
those constants and types whose interpretations change in D

0, by the (transitive)
dependency on u. We define ground constant instances and ground types that
depend on the definition of u.

Vu :=
[

{x|x ⌘ y 2 D

0
u},

GCu := CInst \
[

✓2GTSubst
✓(Vu), GTu := Type \

[

✓2GTSubst
✓(Vu).

By Lemma 3.2, Fu := (GType⇤ \GT,GCInst⇤ \GC) is a fragment. We can equip the
fragment Fu with an interpretation that coincides with the one of M, the top-level
total fragment over Fu, so that for any constant instance or type t of the fragment Fu

we will obtain [t]M = [t]Fu .
We say a definition (x ⌘ r) 2 D

0 matches v, if there is a type substitution
✓ 2 TSubst such that v = ✓(x), meaning v is a type instance of x. As D

0 is
orthogonal no definition in D

0 \D0
u matches any of D0

u.
We can follow the argumentation of [6, Theorem 11] to recursively define the

interpretation for the types Tu and for the constant instances Cu based on the
fragment Fu. Thereby we obtain a model M0 of (GType [GCInst)⇤ for D

0 which by
construction satisfies the notion of model extension:

We now define the interpretation of all elements in (GType [GCInst)⇤ (with
respect to M0). For v 2 (GType\GTu[GCInst\GCu)⇤ we define [v]M

0
:= [v]M. This

defines an interpretation on the fragment Fu as the types of all constant instances
of the fragment are in the fragment and the non-emptyness of interpretation of
types is inherited from [·]M. This proofs the property of the model, once we have
defined the interpretation for the elements in (GTu [GCu)⇤ and showed that it is a
model for D

0. By recursion, assume the interpretation [w] has been defined for all
w 2 (GType [GCInst)⇤ for which v #+

w holds.

9

Gengelbach and Weber

(i) If for v there is no matching definition in D

0, then we define v accordingly.

[v] :=

(
{⇤} v 2 GType⇤

choice([�]) v = c�, so v #
�

(ii) Let x ⌘ r 2 D

0 be a (and due to orthogonality thus ‘the’) definition which v

matches, and let ✓ 2 TSubst be the corresponding type substitution. We define
the interpretation of v based on the interpretation of the term s := ✓(r), the
defining term for v. As in [6], let Vv := {y|v #+

y} be the set of types and
constant instances that v depends on and accordingly we set

Tv := Vv \ Type and Cv := Vv \ CInst

for the types and constant instances in Vv, respectively. The pair Fv := (Tv,Cv)
clearly is a fragment and s contains only constant instances and types of this
fragment. Hence s is a term in the fragment Fv so we can regard its value
[s]Fv ,Iv with respect to the interpretation Iv := (([q])q2Tv , ([q])q2Cv).

Let � 2 Type such that tpOf(s) = �) bool, for both of the cases
where v is a type v 2 GType⇤. Note that [s] is a function, more precisely
[s]Fv ,Iv : Term� ! bool.

[v] :=

8
><

>:

[s]Fv ,Iv
v 2 GCInst⇤

{⇤} v 2 GType⇤,True 62 [s]Fv ,Iv([�]Fv ,Iv)

[�]Fv ,Iv \ ([s]Fv ,Iv)�1({True}) otherwise
If v 2 GType⇤ is a type then its valuation is defined as the empty type, in case
that for no feasible value in � the term s can evaluate to True. In the remaining
case [v] is the set of all values that fulfil the property s.

Thus by recursion, let M0 be the interpretation for the top element fragment
(GType⇤,GCInst⇤) with respect to [·]. Analogous to [6] we can show M0 |= D

0

by orthogonality of D

0, showing that each of the defined terms is interpreted as
desired. 2

Our approach extends an existing model M for a theory D to a model of any
well-formed definitional theory extension D

0. A model for the extended theory is
constructed by recursion over the # relation basing on interpretations from the
model M. The model construction by [6] was carried out by recursion over the #

relation basing on no interpretations.
As a consequence of the previous lemma we obtain the result [6, Theorem 11]:

Corollary 3.4 Any well-formed definitional theory admits a model.

Proof. Theorem 3.3 implies the following: Let M be a model for a well-formed
definitional theory T , i. e. M |= T . If the extension of T by a definition is a well-
formed definitional theory, then there exists a model M0 of the extended theory T

0,
such that M and M0 coincide on the interpretations of all terms that do not contain
any of

{✓(v)|✓ 2 GTSubst, (v ⌘ s) 2 T

0
 #+T 0\T }.

10

Gengelbach and Weber

This generalisation is immediate by iteratively applying the theorem over the #+

relation.
Let D

0 be a well-formed definitional theory. The construction in Theorem 3.3
shows that the empty theory has a model which interprets undefined types as {⇤}
and each non-defined constant as some element of its type. Together with the initial
remark we gain a model for D

0 from a model for the empty theory. 2

The consistency of well-formed definitional theories [6, Theorem 6] is an imme-
diate consequence.

Corollary 3.5 Any well-formed definitional theory is consistent.

4 Related Work

Extensions by definitions have a long history. In 1967, Shoenfield [12, §4.6] discussed
two definitional mechanisms for extensions of theories in (untyped) first-order logic
by predicate and function symbols. A new symbol is defined by an equivalence
or equality whose right-hand side must not contain the new symbol. For function
symbols, the definition must be accompanied by a proof that this equality describes
a function in the mathematical sense. Both mechanisms are shown to be proof-
theoretic conservative. Moreover, each model of the original theory has a unique
expansion that is a model of the extended theory; this immediately implies model-
theoretic conservativity.

In 1997, Wenzel [13] discussed the theoretical foundation for overloaded defini-
tions and type classes in higher-order logic. He “consider[s] syntactic conservativity
as a minimum requirement for well-behaved extension mechanisms within purely
deductive logical frameworks.” Additionally Wenzel introduces realisability, which
formalises the intuition that constant definitions can be unfolded, and shows that
overloaded constant definitions are both conservative and realisable. However, he
assumes that all instances of an overloaded constant are defined at once, and he
does not consider the interplay of overloading with type definitions (cf. the example
in Section 1).

In 2006, Obua [11] noted that to avoid inconsistencies, the process of unfolding
definitions must terminate. He shows that for overloaded definitions that recurse
through types, termination is not semi-decidable in general. Obua considers both
type and constant definitions and gives a proof sketch that overloading in Isabelle is
conservative, but he misses that dependencies through types may introduce incon-
sistencies.

Most closely related is the already mentioned work by Kunčar and Popescu [6],
who in 2015 introduced definitional theories for Isabelle and show that they pre-
serve consistency, i. e. every well-formed definitional theory has a model. In [7], the
same authors prove syntactic consistency (i. e. False is not derivable) of definitional
theories by a proof-theoretic argument. They introduce a richer logic, HOL with
comprehension types (HOLC), into which they encode formulas of HOL by unfolding
type and constant definitions. This encoding preserves derivability. The consistency
of definitional theories then follows from the consistency of HOLC.

In a recent technical report [8], Kunčar and Popescu show a much stronger result:

11

Gengelbach and Weber

using a different unfolding approach that relativises formulas involving defined types
to a predicate on the host type (and thus stays within the language of HOL), they es-
tablish proof-theoretic conservativity of definitional theories over minimal HOL, i. e.
relative to an empty theory that contains no axioms. In contrast, the present paper
proves model-theoretic conservativity relative to arbitrary (well-formed) definitional
theories.

Other theorem provers for higher-order logic, e. g. HOL4 [10, §2.5.2], implement
a more general mechanism for constant specification. This mechanism, which in its
current form was suggested by Arthan [2], allows implicit definitions. It takes as
input a theorem of the form v1

.

= t1, . . . , vn
.

= tn ` P (where the vi are variables) and
introduces new constants c1, . . . , cn with P [c1/v1, . . . , cn/vn] as their defining axiom.
Conventional constant definitions c ⌘ t are recovered as a special case when P is of
the form v

.

= t. Constant specification is proof- and model-theoretic conservative [3],
and has been formalised and verified using HOL4 by Kumar et al. [4]. However, in
contrast to Isabelle, which supports ad hoc overloading natively in its logic, other
theorem provers for higher-order logic offer support for overloading only as syntactic
sugar, through extensions of parsing and pretty-printing.

5 Conclusion

We defined a notion of model expansion that is suitable for definitional theories, and
we showed that extensions of definitional theories are model-theoretic conservative
with respect to this notion. This strengthens and generalises an earlier consistency
result for definitional theories [6]. We have thereby established an important prop-
erty of the definitional mechanisms that are implemented in the theorem prover
Isabelle.

Model-theoretic conservativity has a proof-theoretic (syntactic) counterpart.
Roughly, an extension is proof-theoretic conservative if it entails no new theorems in
the original language. In other words, every formula of the original language that is
a theorem in the extension is already provable in the original theory. Adapting this
notion to definitional theories, we conjecture that if D0 is an extension of D such
that D

0 ` ', where ' is a formula that does not contain any constant instance or
type that depends on definitions in D

0 \D, then D ` '.
For logics that have a sound and complete deductive system, model-theoretic

conservativity implies proof-theoretic conservativity: suppose D

0 ` '. By complete-
ness it suffices to show that ' holds in all models of D. Let M be a model of D.
By model-theoretic conservativity, M can be expanded to a model M0 of D0 that
agrees with M on the interpretation of '. Since D

0 ` ', soundness implies that M0

is a model of '. Hence M is a model of '.
Unfortunately, this argument does not immediately apply to higher-order logic,

which is not complete with respect to its standard semantics [10, §2.4.5]. However,
higher-order logic is complete with respect to non-standard (Henkin) semantics [1,
§54]. By adapting the completeness proof to the variant of higher-order logic im-
plemented in Isabelle and to the novel semantics of polymorphic types suggested
in [6], it may be possible to derive proof-theoretic conservativity for extensions of
definitional theories from their model-theoretic conservativity. We leave the details

12

Gengelbach and Weber

to future work.

References

[1] Andrews, P. B., “An Introduction to Mathematical Logic and Type Theory: To Truth through Proof,”
Number 27 in Applied logic series, Kluwer Academic Publishers, Dordrecht ; Boston, 2002, 2nd ed
edition.

[2] Arthan, R., HOL Constant Definition Done Right, in: Interactive Theorem Proving (2014), pp. 531–
536.
URL http://dx.doi.org/10.1007/978-3-319-08970-6_34

[3] Arthan, R., On Definitions of Constants and Types in HOL, Journal of Automated Reasoning 56
(2016), pp. 205–219.
URL http://dx.doi.org/10.1007/s10817-016-9366-4

[4] Kumar, R., R. Arthan, M. O. Myreen and S. Owens, HOL with Definitions: Semantics, Soundness,
and a Verified Implementation, in: Interactive Theorem Proving (2014), pp. 308–324.
URL http://dx.doi.org/10.1007/978-3-319-08970-6_20

[5] Kuncar, O., Correctness of Isabelle’s cyclicity checker: Implementability of overloading in proof
assistants, in: X. Leroy and A. Tiu, editors, Proceedings of the 2015 Conference on Certified Programs
and Proofs, CPP 2015, Mumbai, India, January 15-17, 2015 (2015), pp. 85–94.
URL http://doi.acm.org/10.1145/2676724.2693175

[6] Kunčar, O. and A. Popescu, A Consistent Foundation for Isabelle/HOL, in: C. Urban and X. Zhang,
editors, Interactive Theorem Proving, number 9236 in Lecture Notes in Computer Science, Springer
International Publishing, 2015 pp. 234–252.
URL http://dx.doi.org/10.1007/978-3-319-22102-1_16

[7] Kunčar, O. and A. Popescu, Comprehending Isabelle/HOL’s Consistency, in: H. Yang, editor,
Programming Languages and Systems - 26th European Symposium on Programming, ESOP 2017,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, Lecture Notes in Computer Science 10201 (2017),
pp. 724–749.

[8] Kunčar, O. and A. Popescu, Safety and Conservativity of Definitions in HOL and Isabelle/HOL,
Technical report (2017).
URL http://andreipopescu.uk/pdf/conserv_HOL_IsabelleHOL.pdf

[9] Nipkow, T., L. C. Paulson and M. Wenzel, “Isabelle/HOL – A Proof Assistant for Higher-Order Logic,”
Lecture Notes in Computer Science 2283, Springer, 2002.
URL https://doi.org/10.1007/3-540-45949-9

[10] Norrish, M. and K. Slind, The HOL System LOGIC (2014).
URL http://downloads.sourceforge.net/project/hol/hol/kananaskis-10/kananaskis-10-logic.
pdf

[11] Obua, S., Checking Conservativity of Overloaded Definitions in Higher-Order Logic, in: Term Rewriting
and Applications (2006), pp. 212–226.
URL http://dx.doi.org/10.1007/11805618_16

[12] Shoenfield, J. R., “Mathematical Logic,” A.K. Peters, Natick, Mass, 1967.

[13] Wenzel, M., Type classes and overloading in higher-order logic, in: E. L. Gunter and A. Felty, editors,
Theorem Proving in Higher Order Logics, number 1275 in Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 1997 pp. 307–322.
URL http://dx.doi.org/10.1007/BFb0028402

13

The MMT Perspective on Conservativity

Florian Rabe

1,2

Computer Science
Jacobs University
Bremen, Germany

Abstract

Conservative extensions are one of the most important concepts in formal logic, capturing the intuition when
an extension does not substantially change the extended theory. Two conceptually di↵erent definitions have
emerged in proof and model theory, respectively. Unfortunately these are conceptually very di↵erent and
not equivalent.
We develop both notions in the MMT framework, which allows for an elegant uniform treatment of proof
and model theory. In MMT, the di↵erence between the two definitions becomes less fundamental. Moreover,
we see that the existence of two di↵erent notions of conservativity is neither a coincidence nor a defect: it
becomes a special case of the well-known di↵erence between admissible and derivable reasoning principles.
Moreover, we are able to relate conservativity to the completeness of a logic, thus adding another connection
between proof and model theory.

Keywords: conservative extension, logical framework, admissible, derivable, completeness

1 Introduction

Motivation

Conservativity is at the heart of mathematics and logics. Most abstractly, it
means to extend a formal system in a way that e↵ectively does not change it.
Because this is what happens when adding definitions and theorems, it has received
substantial attention in the area of formal logic.

Not surprisingly, di↵erent concrete definitions of the abstract intuition have been
studied. Two notions have been used most widely, one based on proof theory and one
based on model theory. 3 Due to the di↵erent philosophical backgrounds, it is not
surprising that these notions are conceptually very di↵erent. This is not unusual: for
example, the notion of theorem also has two very di↵erent definitions in proof and
model theory. However, contrary to theorems, the two definitions of conservativity
are not equivalent even in the presence of a sound and complete calculus. (The

1 This work was supported by DFG under grant RA-18723-1.
2 f.rabe@jacobs-university.de
3 The author has traced the model-theoretical definition back to [7] but could not locate the first use of
the (older) proof theoretical definition.

Rabe

model theoretical one implies the proof theoretical one.) Consequently, this may
lead to confusion and possibly even contention among researchers. 4

Contribution

This paper contributes to the discussion by developing both definitions in the
context of the author’s MMT framework [13,12]. MMT uses logical frameworks
[10] as formal meta-logics in which to represent logics. In doing so, it integrates
frameworks with a proof theoretical background such as LF [6] with model theoret-
ical frameworks such as institutions [4]. This lets MMT elegantly represent both
proof and model theoretical concepts uniformly [8,1,12]. Moreover, MMT is sys-
tematically designed to be logic-independent. Thus we can use it to give rigorous
definitions of logical concepts (such as proofs and models or logic translations) in
full generality. These properties make MMT well-suited to study the two notions
of conservativity.

Our most important result is that we are able to relate the two notions of
conservativity to the concepts of admissible and derivable rules. At the MMT-level,
proof and model theoretical conservativity end up being special cases of admissibility
and derivability, respectively. This provides an elegant understanding of both the
similarities and the di↵erences of the two competing definitions.

MMT also lets us elegantly capture the subtlety that the model theoretic defini-
tion actually constitutes a family of di↵erent definitions—one each for every model
theory that is used. We naturally encounter a certain syntactic model theory that
induces the strictest reasonable notion of conservativity, with every refinement of
the model theory leading to a more lenient notion. Taking these refinements to
the extreme, we find the proof theoretic definition as the most lenient reasonable
notion.

Furthermore, we are able to cast completeness of a logic as a special case of
admissibility as well, thus creating an appealing connection between conservativity
and completeness.

Overview

Sect. 2 recalls the existing definitions of proof and model theoretical conserva-
tivity, and we summarize the necessary preliminaries about MMT in Sect. 3. Sect. 4
develops our definitions and establishes their properties.

2 Existing Definitions of Conservativity

Conservativity can be defined for an arbitrary logic. To state the definitions in
full generality, we can use a framework like institutions [4]. However, the precise
abstract definition is not essential for our purposes. Therefore, we only assume a
very lightweight definition to make the paper more accessible. A logic consists of

• a category of theories,
• a set of sentences Sen(⌃) for each theory ⌃ and a sentence translation v(�) :
Sen(⌃) ! Sen(⌃0) for every theory morphism v : ⌃ ! ⌃0,

4 In fact, this paper was motivated by the author’s impression that this seems to be the case.

2

Rabe

• a provability predicate giving the provable subset of Sen(⌃),
• a class of models Mod(⌃) for each theory ⌃ and a model reduction function
Mod(⌃0) ! Mod(⌃) for every theory morphism v : ⌃ ! ⌃0,

• a satisfaction relation between models in Mod(⌃) and sentences in Sen(⌃),

with some coherence conditions between them. Detailed definitions based on insti-
tutions are given in, e.g., in [3,11].

Relative to such a logic, soundness and completeness can be defined in the usual
way by relating the provable sentences to those that are satisfied by all models.
Moreover, we can state the usual definitions of conservativity:

Definition 2.1 [Proof-Theoretically Conservative] A morphism v : ⌃ ! ⌃0 is con-
servative if every ⌃-sentence F is provable i↵ the ⌃0-sentence v(F) is provable.

For the special case of an extension v : ⌃ ,! ⌃0, this says that the larger theory
does not prove any ⌃-sentences that were not already provable in ⌃.

Definition 2.2 [Model-Theoretically Conservative] A morphism v : ⌃ ! ⌃0 is
conservative if for every ⌃-model m there is a ⌃0-model m0 that reduces to m via v.

For the special case of an extension, this says that every model of the smaller
theory can be extended to a model of the larger theory.

As indicated before, these definitions are not equivalent:

Theorem 2.3 If v is conservative in the model-theoretical sense and the logic is

sound and complete, then v is conservative in the proof-theoretical sense.

The converse is not true in general.

3 Logics in the MMT-Framework

This section is a summary of the basic definitions of logics in MMT as given in
[12]. [12] uses an arbitrary logical framework that is itself defined in MMT. All
our results in this paper generalize easily to this general case. However, to make
this paper more accessible (and shorter), we use a single, fixed logical framework.
Concretely, we use LF.

3.1 Logical Framework

The Logical Framework LF

LF [6] is a dependent type theory using the following concepts and notations:
• a universe type of types
• dependent function types ⇧x:AB, which are written A ! B if x does not occur
free in B

• dependent function abstraction �x:A t,
• function application f a,
• �-reduction and ⌘-conversion.

We omit the well-known typing rules.

3

Rabe

Theories

LF-theories ⌃ are sets of declarations, which are one of the following
• type declarations c : ⇧x1:A1 . . .⇧xn:An type
• term declarations c : A for some type A

Relative to a theory ⌃, we have the set of all types A and the set of all terms t.
These are subject to the typing judgment t : A and the equality judgments t ⌘ t0

and A ⌘ A0. (The latter equality judgment is needed because terms may appear in
types.) Typing and equality of terms and types are decidable. We say that a type
A is inhabited if there is a term t : A.

Example 3.1 [Syntax of First-Order Logic] We define first-order logic FOL as the
following LF theory FOL:

o : type

i : type

thm : o ! type

¬ : o ! o

^ : o ! o ! o

) : o ! o ! o

.
= : i ! i ! o

8 : (i ! o) ! o

9 : (i ! o) ! o

mp : ⇧F :o⇧G:o thm (F) G) ! thm F ! thm G
...

FOL-terms and sentences are represented as LF-terms over the theory FOL of
type i and o, respectively. We use currying to represent functions with multiple
arguments as unary functions. We will use the usual infix notations where applica-
ble, e.g. the term (^F)G represents the sentence F ^ G. Binders are represented
using higher-order abstract syntax: the term 8(�x : i.F (x)) represents the sentence
8x.F (x). In future examples, we will use the usual notations instead of the ones
technically prescribed by our encoding in LF.

The type constructor thm serves as the truth judgment. Proof-theoretically, we
use a Curry-Howard representation of proofs as terms, i.e., the terms p : thm F are
the proofs of F ; model-theoretically, we will below treat F as true if the type thm F

is inhabited.

We only give a single proof rule as an example: The modus ponens rule mp takes
two formulas F and G, a proof of F) G and a proof of F and returns a proof of
G. All natural deduction rules of first-order logic can be written as LF declarations
in this style.

Theory Morphisms

LF-theory morphisms � : ⌃ ! ⌃0 are sets of assignments, one for each declara-
tion in ⌃:

• for every ⌃-type declaration c : ⇧x1:A1 . . .⇧xn:An type, a type assignment

a 7! �x1:�(A1) . . .�xn:�(An)B

for some ⌃0-type B with free variables x1, . . . , xn.

4

Rabe

• for every ⌃-term declaration c : A, a term assignment c 7! t for a ⌃0-term
t : �(A)

where �(�) is the homomorphic extension of � defined below.

Every theory morphism � extends to a homomorphic translation �(�), which
maps ⌃-terms and types to ⌃0-terms and types. �(�) preserves typing and equality,
e.g., if t : A holds over ⌃, then �(t) : �(A) holds over ⌃0. If particular, if A is
inhabited over ⌃, then �(A) is inhabited over ⌃0.

Example 3.2 [Semantics of First-Order Logic] We sketch a morphism FOLZF

from FOL a theory ZF for axiomatic set theory. The intuition behind FOLZF

is that it is the interpretation function that maps FOL-terms and FOL-formulas to
their denotations.

ZF is an extension of FOL that declares the binary predicate 2: i ! i ! o

and adds the axioms of set theory. Besides the usual set theoretical operations, ZF
defines in particular the 2-element set bool : i of Booleans containing the elements
0 : i and 1 : i. Moreover, we add a type constructor Elem : i ! type such that terms
of type Elem A represent the elements of the set A : i. The complete definition of
ZF can be found in [9].

We extend ZF with a theory � that axiomatizes a basic FOL-model: � contains
the declarations univ : i and nonempty : thm (9x.x 2 univ) which describe a non-
empty set.

Then we define the semantics as the morphism FOLZF : FOL ! ZF ,�, which
maps in particular

• FOLZF (i) = Elem univ , i.e., univ is an arbitrary non-empty set representing
the universe of the model and terms are interpreted as elements of univ ,

• FOLZF (o) = Elem bool , i.e., every formula is interpreted as a boolean truth
value,

• FOLZF (thm) = �x : Elem bool .thm(x
.
= 1), i.e., FOLZF (thm F) is inhabited

i↵ FOLZF (F) is provably equal to the truth value 1.

All connectives can now be mapped in the usual way. For example, FOLZF (^) is
the binary conjunction of Booleans. All proof rules can be mapped as well—each
assignment of a proof rule represents a case in the soundness proof.

Ultimately, the typing preservation of LF-morphism guarantees soundness: every
FOL-proof P : thm F gives rise to a ZF -proof FOLZF (P) : thm (FOLZF (F)

.
= 1),

i.e., the usual soundness theorem.

Pushouts

LF theories and theory morphisms form a category. Moreover, this category has
pushouts along inclusions, which we write as

Syn

Syn,⌃

Sem

Sem, sem(⌃)

sem

sem⌃

sem(⌃) can be seen as the homomorphic translation of ⌃: It contains the decla-

5

Rabe

ration c : sem⌃(A) for every declaration c : A in ⌃. Here sem⌃ maps Syn-constants
like sem, and it maps each c : A in ⌃ to the corresponding c in sem(⌃).

For a morphism v : Syn,⌃ ! Syn,⌃0 that is the identity on Syn, we write
sem(v) : Sem, sem(⌃) ! Sem, sem(⌃0) for the unique factorization through the
pushout. Thus, sem(�) is a functor from extensions of Syn to extensions of Sem.

Technically, there are some subtleties here because the above construction of the
pushout is not always well-defined—there is a problem if the same name is declared
in both Sem and ⌃. This is discussed in [12] and not essential for the results in this
paper.

3.2 Logics

In MMT, we can define logics easily by abstracting from the intuitions presented in
Ex. 3.1 and 3.2:

Definition 3.3 [Logical Theories] A logical theory Syn is an LF-theory with
distinguished declarations o : type and thm : o ! type.

Consider two logical theories Syn (with o and thm) and Syn0 (with o0 and thm 0).
A logical morphism is an LF-morphism l : Syn ! Syn0 such that l(thm x) =
thm 0(k x) for some expression k : l(o) ! o0. (k is uniquely determined if it exists.)

Definition 3.4 [Logic] A logic is a 4-tuple forming a logical morphism sem : Syn !
Sem,�.

Example 3.5 [First-Order Logic] FOL from Ex. 3.1 is a logical theory where o and
thm are the distinguished declarations.

FOLZF : FOL ! ZF ,� from Ex. 3.2 is a logical morphism with k x = x
.
= 1.

Every logic in the sense of Def. 3.4 induces a logic in the sense of Sect. 2. Here
the intuitions behind Syn, Sem, �, and sem are as follows:

• The logical theory Syn represents the syntax and proof theory: sentences are
the terms of type o, and proofs are the terms of type thm F .

• The logical theory Sem represents the semantic foundation, e.g., an ambient
set theory like ZF .

• � extends Sem with the axiomatization of a basic model. For FOL, � is very
simple—the theory of a non-empty set. But � can be arbitrarily complex, e.g.,
the theory of a category for categorical models or the theory of a Kripke frame
for Kripke models.

• The logical morphism sem describes the interpretation of the syntax and proofs
in an arbitrary model.

In the remainder of this section, we make these intuitions precise for a fixed logic
sem : Syn ! Sem,�.

Definition 3.6 [Abstract Negation] For a type A in a logical theory, we abbreviate
A := A ! ⇧F :oF .

A logical theory is classical if it has a term of type classical : ⇧F :othm F !
thm F .

6

Rabe

The type A represents a negation of A in the sense that if A is inhabited, the
theory is inconsistent because every formula is provable. Thus, classical logics are
the one that have double-negation elimination.

Definition 3.7 [Syntax and Proofs] A Syn-theory is an extension Syn ,! Syn,⌃
of Syn.

A Syn-theory morphism is a morphism � : Syn,⌃ ! Syn,⌃0 satisfying
�|Syn = idSyn.

Consider a Syn-theory ⌃:
• A ⌃-sentence is a ⌃-term F : o.
• A ⌃-proof of F is a ⌃-term p : thm F .
• A ⌃-disproof of F is a ⌃-term of type thm F .
• F is (dis)provable if there is a (dis)proof of F .

A Syn-theory morphism � : ⌃ ! ⌃0 translates sentences and proofs over ⌃ to
⌃0 by applying the homomorphic extension �(�).

Definition 3.8 [Semantics and Models] Consider a Syn-theory ⌃, and a ⌃-sentence
F . Then:

(i) A ⌃-model via sem is a Sem-theory morphismm : Sem,�, sem(⌃) ! Sem,M

such that m|Sem = idSem .
(ii) F is true resp. false in such a model m if the type m(sem⌃(thm F)) resp.

m(sem⌃(thm F)) is inhabited in the theory in Sem,M .

A Syn-theory morphism � : ⌃ ! ⌃0 reduces a modelm of ⌃0 to the modelm�sem(�)
of ⌃.

Syn

Syn,⌃

SemSem,�

Sem,MSem,�, sem(⌃)

sem

sem⌃ m

Note that a model m must be the identity on Sem and interpret the declarations
in � and in sem(⌃) as values in Sem. That is the reason why we need two di↵erent
theories for Sem and � when defining a logic.

Definition 3.9 [Consistency] An Syn-theory ⌃ is consistent if there is no ⌃-
sentence that is both provable and disprovable.

A logical morphism sem : Syn ! Sem preserves consistency if sem(⌃) is
consistent whenever ⌃ has at least one sentence and is consistent.

One of the main theorems of [12] is the following:

Theorem 3.10 (Soundness/Completeness) Every logic sem : Syn ! Sem,�
is sound in the sense that provable ⌃-sentences are true in all ⌃-models via sem.

Moreover, if Syn is classical and sem preserves consistency, the logic is also

complete in the dual sense.

7

Rabe

4 Conservative Morphisms

We will now develop definitions of conservativity for arbitrary logics defined in the
MMT framework. A key insight is to define general notions of derivability and
admissibility first.

4.1 Derivable and Admissible Rules

Derivable and admissible are well-known concepts in the study of inference systems.
Both mean that a rule can be added to an inference system without changing its
essence. In MMT, we can give a very general precise definition:

Definition 4.1 [Admissible, Derivable] Consider a theory Syn.

For a set J of Syn-types, a type R is called J-admissible if every type in J is
inhabited over Syn i↵ it is inhabited over Syn, r : R.

A type R is called derivable if it is admissible for the set of all Syn-types.

For J-admissibility, the left-to-right implication always holds: If there is a Syn-
term t : A, then t is also a Syn, r : R-term. Only the right-to-left implication is
special.

Theorem 4.2 A Syn-type R is derivable i↵ there is a Syn-term P : R.

In particular, we have a morphism idSyn, r 7! P from Syn, r : R to Syn.

Proof. Assume there is a term P : R. We can always replace r with P in any term
over Syn, r : R, thus proving J-admissibility.

Assume admissibility for every type T . We obtain P by instantiating with
T = R. 2

Thus, if a rule (represented by the type R) is derivable, we have a derivation for it
(represented by the term P), and adding it to the inference system (the declaration
r : R) just adds an abbreviation (the name r) for a derivation that already existed.
For example, let Syn = FOL and R = ⇧F,G,H thm (F) G) H) ! thm F !
thm G ! thmH. R is a derivable rule: We can derive it applying modus ponens
twice, and the term P : R is given by �F,G,H �p,q,r mpGH (mp F (G) H) p q) r.

A J-admissible rule may create substantively new derivations as long as it does
not create new J-terms. The most important special case arises when Syn is a
logical theory and J is the set of all types of the form thm F : then J-admissibility
of a rule R means that no new formula F becomes provable if R is added to Syn.

Derivable rules are admissible but not vice versa. Admissible-but-not-derivable
rules are of great importance in the meta-theory of logics. Examples are the deduc-
tion theorem in Hilbert calculi and the cut rule in sequent calculi.

Proofs of derivability are usually straightforward: we just have to exhibit the
derivation P . Proofs of admissibility, however, are usually very involved, often
requiring an induction over all Syn-terms. Moreover, derivability is the more robust
notion: Extending Syn in any way can never break the derivability of R (because
P : R remains a well-formed term), but it can break admissibility (because it adds
a new case that has to be considered in the inductive proof).

8

Rabe

In the sequel, we often need to talk about admissibility where the set J a certain
form. Therefore, we define:

Definition 4.3 For a logical theory and a type constructor thm : o ! type, we say
thm-admissible if we mean admissible for the set of all types of the form thm F .

4.2 Derivable and Admissible Morphisms

The previous section formalized the existing concepts of derivable and admissible
in MMT. Now we use the MMT formalism to generalize the definitions to arbitrary
theory extensions.

Definition 4.4 [Admissible/Derivable Extensions] Consider a theory extension Syn ,!
Syn0.

It is called J-admissible if every type in J is inhabited over Syn i↵ it is inhabited
over Syn0.

It is called derivable if it is admissible for the set of all Syn-types.

Theorem 4.5 An extension Syn ,! Syn0 is derivable i↵ it has a retraction, i.e.,

if there is a morphism P : Syn0 ! Syn such that P |Syn = idSyn.

Proof. Let Syn0 = Syn,⌃.

Assume there is a morphism P . We can always replace any ⌃-symbol c with
P (c) in any Syn0-term, thus proving J-admissibility.

Assume admissibility for every type T . We build the morphism P by induction
on ⌃. Assume we have P : Syn,⌃0 ! Syn. For the next ⌃-declaration c : A, we
instantiate admissibility with T = P (A) to obtain a Syn-term p. Then P, c 7! p is
a morphism Syn,⌃0, c : A ! Syn. 2

Theory extensions are the most important special case when studying conserva-
tivity. But it is easy to generalize the concepts to arbitrary morphisms. This has
practical importance because it allows considering, e.g., renamings or isomorphisms
in addition to extensions:

Definition 4.6 [Admissible/Derivable Morphisms] Consider a theory morphism v :
Syn ! Syn0.

v is called J-admissible if every type A in J is inhabited over Syn i↵ v(A) is
inhabited over Syn0.

v is called derivable if it has a retraction, i.e., if there is a morphism P : Syn0 !
Syn such that P � v = idSyn.

Theorem 4.7 If v : Syn ! Syn0 is derivable, then it is admissible for all Syn-

types.

Proof. Applying the retraction of v yields a Syn-term for every Syn0-term. 2

For arbitrary morphisms, admissibility for all Syn-types is not the same anymore
as having a retraction. The problem is that quantifying over all Syn-types A is not
strong enough to quantify over all Syn0-types because not every Syn0-type is of the
form v(A). Therefore, we have to choose one of the two notions as the appropriate

9

Rabe

generalization of derivability. In Def. 4.6, we choose the retraction property because
it better captures the intuition that all Syn0-declarations can be derived in Syn.

Finally we establish some basic closure properties.

Theorem 4.8 (Closure Properties) Derivable and admissible morphisms have

the following closure properties:
• Identity

· The identity morphism is derivable.

· The identity morphism is J-admissible for any J .
• Composition

· If v and w are derivable, then so is w � v.
· If v is J-admissible and w is v(J)-admissible, then w � v is J-admissible.

• Decomposition

· If w � v is derivable, then so is v.

· If w � v is J-admissible, then so is v.

Additionally, derivable morphisms have the following closure properties:
• Union: The union ⌃,⌃0,⌃1 of derivable extensions ⌃,⌃0 and ⌃,⌃1 is deriv-

able.
• Pushout: The pushout of a derivable morphism is derivable.

Proof. All proofs are straightforward. 2

The closure under pushouts formally captures the robustness of derivability: It
is preserved under translations of the domain theory. Admissibility of morphisms,
however, is brittle: It can be broken by relatively minor changes to the domain
theory.

4.3 Conservative Morphisms

In this section, we fix a logic sem : Syn ! Sem,�. We want to study the conser-
vativity of a Syn morphism v : ⌃ ! ⌃0. The following diagram describes our basic
situation.

Syn

Syn,⌃

Syn,⌃0

Sem,�

Sem,�, sem(⌃)

Sem,�, sem(⌃0)

v sem(v)

sem

sem⌃

sem⌃0

Definition 4.9 [Proof-Theoretically Conservative] A Syn-morphism v : ⌃ ! ⌃0 is
called proof-conservative via sem if sem(v) is sem⌃(thm)-admissible.

v is simply called proof-conservative if it is proof-conservative via idSyn.

Intuitively, v is proof-conservative via sem if semantic proofs (i.e. proofs carried
out in the ambient foundation Sem that talk about truth in an arbitrary model)
exhibit the typical conservativity property when moving along v.

10

Rabe

For every logical theory Syn, we have the trivial semantics idSyn. The spe-
cial case of being proof-conservative via idSyn immediately yields the usual proof-
theoretical notion from Def. 2.1:

Theorem 4.10 v : ⌃ ! ⌃0 is proof-conservative i↵ the following holds: every

⌃-sentence F is ⌃-provable i↵ v(F) is ⌃0-provable.

In particular, an extension ⌃ ,! ⌃0 is proof-conservative if every ⌃-sentence is

⌃-provable i↵ it is ⌃0-provable.

Proof. This follows easily because if sem = idSyn, then sem(�) is the identity, and
in particular sem(v) = v. 2

Definition 4.11 [Model-Theoretically Conservative] A Syn-morphism v : ⌃ ! ⌃0

is model-conservative via sem if sem(v) is derivable, i.e., if there is a retraction
r as in the commutative diagram below.

Syn,⌃

Syn,⌃0

Sem,�, sem(⌃)

Sem,�, sem(⌃)
id

Sem,�, sem(⌃0)

v sem(v)

sem⌃

sem⌃0
r

v is simply called model-conservative if it is model-conservative via idSyn,
i.e., if v has a retraction.

The question whether our notion of model-conservativity is equivalent to the
usual one from Def. 2.2, is tricky. We establish one direction first:

Theorem 4.12 If v : ⌃ ! ⌃0 is model-conservative via sem, then every ⌃-model

m via sem can be expanded to a ⌃0-model m0 via sem that reduces to m.

Proof. We put m0 = m � r. The reduct of m0 via v is m0 � sem(v), which is equal
to m because r � sem(v) = id .

Syn,⌃

Syn,⌃0

Sem,�, sem(⌃)

Sem,�, sem(⌃)
id

Sem,�, sem(⌃0)

v sem(v)

sem⌃

sem⌃0
r

Sem,M

m

2

The other direction of the equivalence depends on subtle properties of the theory
Sem. For example, consider the case where sem and Sem formalize the usual set-
theoretical semantics in some ambient set theory. If we formalize Def. 2.2, we obtain
something like the Sem-sentence U given by

8m 2 Mod(⌃). 9m0 2 Mod(⌃0). reduct(v,m0) = m

Our definition, on the other hand, is equivalent to exhibiting a function f such that

8m 2 Mod(⌃). f(m) 2 Mod(⌃0) ^ reduct(v, f(m)) = m

11

Rabe

This is subtly stronger because it requires actually giving f , which in particular
requires f to be definable as a Sem-expression.

For example, consider the most direct formalization of set theory using a FOL-
theory ZF with a single predicate symbol 2. This FOL-theory has no function
symbols at all and therefore cannot give any function f even if it can prove U and
has the axiom of choice. However, assume a variant of ZF that has a choice operator
" : ⇧F :i!prop

! (thm 9x.F (x)) ! i, which chooses some element that satisfies F

provided that such an element exists. Then we can define f as the LF-expression

�m . "
�
�m0 m0 2 Mod(⌃0) ^ reduct(v,m0) = m

� �
8E P m

�

where 8E is the elimination rule that instantiates P : thm U with m to show the
existence of the needed m0.

Note that the axiom of choice would not be su�cient here. It would only allow
proving the existence of f but not choose a term for it.

Such choice operators are relatively strong features of axiomatic set theories.
However, in practical foundations of mathematics that are used in proof assistants,
they are very common. Examples include higher-order logic [5] and the set theory
underlying Mizar [15]. For constructive foundations such as the calculus of con-
structions underlying Coq [2], the choice operator is trivial because the only way to
prove U in the first place is to exhibit f .

We summarize the above analysis in the following theorem:

Theorem 4.13 Assume that Sem adequately formalizes the ambient foundation of

mathematics that is implicitly used in Def. 2.2.

Moreover, assume that whenever Sem can prove a statement of the form “for

all m exists m0 such that F (m,m0)”, it can also define an LF-function f such that

F (m, f(m)).

Then v : ⌃ ! ⌃0 is model-conservative via sem i↵ it is conservative in sense of

Def. 2.2.

Proof. The left-to-right direction is proved by Thm. 4.12. For the right-to-left
direction, assume that for every ⌃-model m there is a ⌃0-model m0 that reduces to
m. Using the assumptions about Sem, that yields a function f that maps ⌃-models
to ⌃0-models.

We construct the needed retraction r of v as follows. First we package the
declarations in �, sem(⌃) into a Sem-term m. The details of this packaging depend
on how Sem defines models. For example, if Sem defines models using record types,
the packaging just constructs a record.

Second, r maps every symbol c of sem(⌃0) to the term that selects the component
c from f(m). Again the details of this selection depend on Sem. For example, if
Sem defines models using record types, the selection is just the projection of the
field c. 2

12

Rabe

4.4 Relating the Notions of Conservativity

For a logic sem : Syn ! Sem,�, Def. 4.9 and 4.11 yield four di↵erent notions of
conservativity. We fix a Syn-morphism v : ⌃ ! ⌃0 and abbreviate as follows:

(PS) v is proof-conservative via sem.

(P) v is proof-conservative.

(MS) v is model-conservative via sem.

(M) v model-conservative.

By instantiating Thm. 4.8, we immediately obtain several closure properties for all
four notions.

Recall that (M) means that v has a retraction, and that (P) and (MS) correspond
to the notions of conservativity from Def. 2.1 and 2.2

The following theorem shows how the four properties relate to each other:

Theorem 4.14 Let C be the assumption that Syn is classical and that sem pre-

serves consistency. Then we have the following graph of implications where A
L! B

means that L and A imply B:

P

M

PS

MS

C

Proof. (MS) implies (PS): This is a special case of Thm. 4.5.

(M) implies (P): This is the special case of (MS) implies (PS) for sem = idSyn.

(M) implies (MS): (M) yields a retraction r : ⌃0 ! ⌃. We obtain the retraction
r+ that establishes (MS) as sem(r).

Syn,⌃

Syn,⌃
id

Syn,⌃0

Sem,�, sem(⌃)

Sem,�, sem(⌃)
id

Sem,�, sem(⌃0)

v sem(v)

sem⌃

sem⌃0
r r+

(PS) implies (P) if (C): Consider a ⌃-sentence F such that there is a ⌃0-proof
P 0 : v(thm F). We need to exhibit a ⌃-proof P : thm F .

First, applying (PS) to the term sem⌃0
(P 0), whose type is

sem⌃0
(v(thm F)) = sem(v)(sem⌃(thm F)),

yields a sem(⌃)-term Q of type sem⌃(thm F).

The remainder of the proof uses (C) to obtain P from Q. If ⌃ is inconsistent,
P exists trivially. So assume it is consistent. Consider ⌃⇤ = ⌃, a : thm F . If ⌃⇤ is

inconsistent, we obtain a ⌃-term of type thm F and classicality of Syn yields the
needed term P .

We conclude the proof by showing that ⌃⇤ is indeed inconsistent. Because sem

13

Rabe

preserves consistency, it su�ces to show that Sem,�, sem(⌃⇤) is inconsistent. That
follows from the terms a : sem⌃(thm F) and Q.

(P) implies (PS) if (C): Consider a ⌃-sentence F such that there is a sem(⌃0)-
proofQ0 : sem(v)(sem⌃(thm F)). We need to exhibit a sem(⌃)-proofQ : sem⌃(thm F).

If ⌃ is inconsistent, this is trivial. So assume it is consistent. Then (P) implies
that ⌃0 is consistent, too. Now as in the case (PS) implies (P), we use the consistency
of ⌃0 and (C) to obtain from Q0 a ⌃0-term P 0 : v(thm F). Then (P) yields a ⌃-term
P : thm F , and we can put Q = sem⌃(P). 2

(M) captures the situation where the syntax of the logic itself can express the
proof of conservativity: as a theory morphism that retracts v. Therefore, if v

satisfies (M), v satisfies any other reasonable definition of conservativity, i.e., (M) is
the minimal/strongest reasonable definition. In particular, the retraction of v yields
both a proof transformation from ⌃0 to ⌃, which shows that (M) implies (P), and
a model reduction from ⌃ to ⌃0, which helps showing that (M) implies (MS). 5

One might think that (M) is too strong in practice. But it is actually very
common as we see in Ex. 4.15 below.

(P) can be seen as a dual to (M)—not satisfying (P) captures the situation
where the syntax of the logic itself can express a counter-example to conservativity:
as a ⌃-sentence that is a ⌃0-theorem but not a ⌃-theorem. Therefore, if v satisfies
any reasonable definition of conservativity, it should satisfy (P), i.e., (P) is the
maximal/weakest reasonable choice.

(MS) sits in between (M) and (P). It captures the situation where the semantics
(but not necessarily the syntax) of the logic can express the proof of conservativ-
ity: as a model transformation that expands ⌃-models to ⌃0-models. Because the
semantics is usually more expressive than the syntax, it is not surprising that (MS)
is weaker than (M). Moreover, because there may be multiple di↵erent ways to give
the semantics of a logic, it is not surprising that (MS) is less canonical than (M) or
(P), i.e., that (MS) depends on the choice of the model theory.

Example 4.15 (M) subsumes a wide variety of important morphisms including:
• Isomorphisms.
• Extension with a definable constant. If we add a constant c : A as an abbre-
viation for some ⌃-term t : A, then ⌃, c : A is derivable using the morphism
that maps c to t.

• Extension with a provable theorem. Adding an axiom a : thm F if F has a
proof P is just a special case of the previous case.

• Extension with a new type. Let Syn have a declaration tp : type such that
terms A : tp represent types of the logic. Adding a new type c : tp is almost
always derivable because we just have to map c to some existing ⌃-type. The
only exception is when ⌃ is the empty theory of a logic without any built-in
types. In that case, (P) and (MS) hold but not (M).

• Extension with a new predicate symbol p : A1 ! . . . ! An ! o. This
is essentially always derivable because we can map p to �x1,...,xn F for some
formula F . The only exception is contrived, namely when ⌃ has no sentences,

5 The corresponding observation for the framework of institutions was previously made in [14].

14

Rabe

in which case (P) and (MS) hold but not (M).
• Extension with a new function symbol f : A1 ! . . . ! An ! A. This is
derivable whenever ⌃ has a term of type A in context x1 : A1, . . . , xn : An,
which is often the case. If there is no such term, (M) fails; (P) and (MS) still
hold unless Syn allows empty types.

• Compositions, unions, and pushouts of morphisms that satisfy (M).

[12] describes how logic translations and semantics become formally the same

thing in MMT. For example, we can have logical morphisms Syn
t! Syn0 s! Sem

r!
Sem 0 representing a logic translation t, a semantics s, and a refinement r of the
semantic foundation. Note that if r � s � t preserves consistency, so do s � t and t.
Let us write (M), (Mt), (Mts), (Mtsr) for model-conservativity via idSyn, t, s � t,
and r � s � t, respectively. Then we have (M) implies (Mt) implies (Mts) implies
(Mtsr) implies (P).

Thus, the more we refine Syn, the weaker model-conservativity becomes. Even-
tually, if we refine further and further, model-conservative and proof-conservative
may eventually coincide. 6 Thus, we can think of (P) as an extreme case of (MS).

4.5 Conservativity and Completeness

Via admissibility, we can unify the concepts of conservative morphism and complete
semantics:

Theorem 4.16 The logic sem : Syn ! Sem,� is complete i↵ all sem⌃ are thm-

admissible.

Proof. [12] already proves that a sentence F holds in all ⌃-models i↵ Sem,�, sem(⌃)
has a term of type sem⌃(thm F). Due to admissibility, such a term exists i↵ ⌃ has
a term of type thm F . 2

Of course, a logic is also complete if the morphisms are derivable. However,
because Sem is usually stronger than Syn, they are virtually never derivable in
practice.

One might hope for a stronger theorem where completeness already holds when-
ever sem is admissible. For that, we have to ask if the admissibility of sem implies
the admissibility of sem⌃. This is not always the case, and we develop a su�cient
criterion now:

Definition 4.17 We say that Syn can abstract over the declaration c : A if for
every for ⌃, c : A-sentence F , there is a ⌃-sentence 8c:AF such that 8c:AF is ⌃-
provable i↵ F is ⌃, c : A-provable.

We write 8�F when we iterate this construction for all declarations in � that
occur in a ⌃,�-sentence F .

We speak of abstracting over theories when we can abstract over every declara-
tion that is allowed in a theory.

The intuition behind 8�F is to universally quantify over the declarations in �.
Thus, abstracting over theories means that Syn has universal quantification over

6 This happens, e.g., if we use maximal consistent sets of sentences as the models.

15

Rabe

all concepts that may be declared in theories. Note that most logics can quantify
over axioms by using implication, e.g., in FOL we can put 8a:thm GF := G) F .

Example 4.18 FOL-theories may declare function and predicate symbols. But
FOL can only universally quantify over variables. Therefore, it cannot abstract
over theories.

Higher-order logic (HOL) with a single base type can declare typed constants.
Because HOL can quantify over variables of all types, it can abstract over theories.
However, the variant of HOL that allows theories to introduce additional base types
cannot abstract over theories because HOL cannot quantify over type variables. For
the same reason typed FOL cannot abstract over theories.

Type theories with universe hierarchies (such as the calculus of constructions)
can usually quantify over all types. Therefore, they can abstract over theories.

First-order set theory allows its theories to declare sets and elements of sets. It
can quantify over both and thus over theories.

Languages that allow axiom schemata, e.g., polymorphic axioms in HOL, usually
cannot abstract over them.

Theorem 4.19 Assume a logic where sem is thm-admissible.

If Syn can abstract over ⌃, then sem⌃ is thm-admissible. In particular, the

logic is complete if Syn can abstract over all theories.

Proof. The proofs are straightforward. 2

The requirement that Syn can abstract over theories is needed because admis-
sibility of sem is a very weak notion: it talks only about sentences over the empty
Syn-theory. Abstracting over theories makes sure that every relevant statement can
be coded as a sentence over the empty theory. As a counter-example, consider FOL
without equality and without constants for truth and falsity: then the empty theory
happens to have no sentences at all so that any morphism out of Syn is already
proof-conservative.

5 Conclusion

We investigated the various notions of conservativity in the MMT framework. We
were able to recover the existing notions of model-theoretical (MC) and proof-
theoretical (PC) conservativity as special cases of admissibility and derivability.

We saw that these two notions should always be discussed together with a third
one, the retractability of an extension (R). Using MMT, it naturally emerged that
(R) and (PC) are the strongest and weakest extremes, whereas (MC) sits anywhere
in between depending on how far the model theory refines the syntax. Moreover,
(R) arises as the special case where the initial model theory is used (where the
models are theory morphisms), and (P) arises as the special cases where a maximally
refined model theory is used (e.g., where the models are maximal consistent sets
of sentences). This harmonically resolves the tension between the two competing
notions of conservativity.

In a second result, we showed how the conservativity of a model theory (seen as
a translation of the syntax) corresponds to the completeness of the logic.

16

Rabe

References

[1] M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, F. Rabe, and K. Sojakova. Towards Logical
Frameworks in the Heterogeneous Tool Set Hets. In T. Mossakowski and H. Kreowski, editors, Recent
Trends in Algebraic Development Techniques 2010, pages 139–159. Springer, 2012.

[2] Coq Development Team. The Coq Proof Assistant: Reference Manual. Technical report, INRIA, 2015.

[3] R. Diaconescu. Proof systems for institutional logic. Journal of Logic and Computation, 16(3):339–357,
2006.

[4] J. Goguen and R. Burstall. Institutions: Abstract model theory for specification and programming.
Journal of the Association for Computing Machinery, 39(1):95–146, 1992.

[5] M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving Environment for Higher-Order
Logic. Cambridge University Press, 1993.

[6] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the Association for
Computing Machinery, 40(1):143–184, 1993.

[7] W. Hodges. Model Theory. Cambridge University Press, 1993.

[8] F. Horozal and F. Rabe. Representing Model Theory in a Type-Theoretical Logical Framework.
Theoretical Computer Science, 412(37):4919–4945, 2011.

[9] M. Iancu and F. Rabe. Formalizing Foundations of Mathematics. Mathematical Structures in Computer
Science, 21(4):883–911, 2011.

[10] F. Pfenning. Logical frameworks. In J. Robinson and A. Voronkov, editors, Handbook of automated
reasoning, pages 1063–1147. Elsevier, 2001.

[11] F. Rabe. A Logical Framework Combining Model and Proof Theory. Mathematical Structures in
Computer Science, 23(5):945–1001, 2013.

[12] F. Rabe. How to Identify, Translate, and Combine Logics? Journal of Logic and Computation, 2014.
doi:10.1093/logcom/exu079.

[13] F. Rabe and M. Kohlhase. A Scalable Module System. Information and Computation, 230(1):1–54,
2013.

[14] L. Schröder, T. Mossakowski, and C. Lüth. Type Class Polymorphism in an Institutional Framework.
In J. Fiadeiro, P. Mosses, and F. Orejas, editors, Recent Trends in Algebraic Development Techniques,
pages 234–251. Springer, 2004.

[15] A. Trybulec and H. Blair. Computer Assisted Reasoning with MIZAR. In A. Joshi, editor, Proceedings
of the 9th International Joint Conference on Artificial Intelligence, pages 26–28. Morgan Kaufmann,
1985.

17

Formalization of Universal Algebra in Agda

Emmanuel Gunther

1
Alejandro Gadea

2
Miguel Pagano

3

FaMAF, UNC – Córdoba, Argentina

Abstract

In this work we present a novel formalization of universal algebra in Agda. We show that heterogeneous
signatures can be elegantly modelled in type-theory using sets indexed by arities to represent operations. We
prove elementary results of heterogeneous algebras, including the proof that the term algebra is initial and
the proofs of the three isomorphism theorems. We further formalize equational theory and prove soundness
and completeness. At the end, we define (derived) signature morphisms, from which we get the contra-
variant functor between algebras; moreover, we also proved that, under some restrictions, the translation of
a theory induces a contra-variant functor between models.

Keywords: universal algebra, formalization of mathematics, equational logic

1 Introduction

Universal algebra [2] is the study of different types of algebraic structures at an
abstract level, thus revealing common results which are valid for all of them and
also allowing for a unified definition of constructions (for example, products, sub-
algebra, congruences). Universal algebra has played a relevant role in computer
science since its earliest days, in particular the seminal paper of Birkhoff [3] features
regular languages as a prominent example; shortly before, Burstall [5] had proved
properties of programs using structural induction, by conceiving the language as
an initial algebra. The ADJ group [10] promoted multi-sorted algebras as a key
theoretical tool for specifying data types [15], semantics [16], and compilers [26].
More recently, institutions [11], a generalization of universal algebra, has been used
as a foundation of methodologies and frameworks for software specification and
development [23].

In spite of the rich mathematical theory of heterogeneous algebras (mostly in-
herited from the monosorted setting, but not always [25]), there are few publicly
available formalizations in type theory (which we discuss in the conclusion). This
situation is to be contrasted with impressive advances in mechanization of particular

1 Email:gunther@famaf.unc.edu.ar Partially supported by a CONICET scholarship.
2 Email:gadea@famaf.unc.edu.ar Partially supported by a CONICET scholarship.
3 Email:pagano@famaf.unc.edu.ar

c�2017 Published by Elsevier Science B. V.

Gunther, Gadea, and Pagano

algebraic structures as witnessed, for example, by the proof of the Feit-Thompson
theorem in Coq by Gonthier and his team [17].

In this work we present an Agda library of multi-sorted universal algebra aiming
both a reader with a background in the area of algebraic specifications and also the
community of type theory. For the former, we try to explain enough Agda in order to
keep the paper self-contained; we will recall the most important definitions of univer-
sal algebra. The main contributions of this paper are: (i) the first formalization of
basic universal algebra in Agda; (ii) the first, to our knowledge, formalization in type
theory of derived signature morphisms and the reduct algebras induced by them;
(iii) a novel representation of heterogeneous signatures in type theory, where opera-
tions are modelled using sets indexed by arities; and (iv) an independent library of
heterogeneous vectors. We formalized the proof that the term algebra is initial and
also the proofs of the three isomorphism theorems; moreover we also define a deduc-
tion system for conditional equational logic and prove its soundness and complete-
ness with respect to Goguen and Meseguer semantics [13]. We also showed that the
translations of theories arising from derived signature morphisms induces a contra-
variant functor between models. In the complete development, which is available at
https://cs.famaf.unc.edu.ar/~mpagano/universal-algebra/, we include sev-
eral examples featuring both the use of equational reasoning and the preservation
of models by signature morphisms.

Outline. In Sec. 2 we introduce the basic concepts of Universal Algebra: sig-
nature, algebras and homomorphisms, congruences, quotients and subalgebras, the
proofs of three isomorphisms theorems, and the proof of the initiality of the term al-
gebra. In Sec. 3 we define an equational calculus, introducing concepts of equations,
theories, satisfiability and provability, ending with the Birkhoff proofs of soundness
and completeness. In Sec. 4 we introduce a new representation of (derived) signature
morphisms and reduct algebras (and homomorphisms), and we explore translation
and implication of theories. Finally, we conclude in Sec. 5, discussing the work done,
and pointing out possible future directions.

2 Universal Algebra

In this section we present our formalization in Agda of the core concepts of heteroge-
neous universal algebra; in the next two sections we focus respectively on equational
logic and signature morphisms. Meinke’ and Tucker’s chapter [20] is our reference
for heterogeneous universal algebra; we will recall some definitions and state all the
results we formalized. Bove et al. [4] offer a gentle introduction to Agda; we expect
the reader to be familiar with Haskell or some other functional language.

2.1 Signature, algebra, and homomorphism

Signature
A signature is a pair of sets (S, F), called sorts and operations (or function

symbols) respectively; each operation is a triple (f, [s1, . . . , sn], s) consisting of a
name, its arity, and the target sort (we also use the notation f : [s1, ..., sn]) s).

In Agda we use dependent records to represent signatures; in dependent records

2

Gunther, Gadea, and Pagano

the type of some field may depend on the value of a previous one or parameters of
the record. Type-theoretically one can take operations (of a signature) as a family
of sets indexed by the arity and target sort (an indexed family of sets can also be
thought as predicates over the index set, an index satisfies the predicate if its family
is inhabited):

record Signature : Set1 where

field

sorts : Set
ops : List sorts ⇥ sorts ! Set

A ⇥ B corresponds to the non-dependent cartesian product of A and B.
In order to declare a concrete signature one first declares the set of sorts and

the set of operations, which are then bundled together in a record. For example,
the mono-sorted signature of monoids has an unique sort, so we use the unit type
> with its sole constructor tt. We define a family indexed on List > x >, with two
constructors, corresponding with the operations: a 0-ary operation e, and a binary
operation • (note that constructors can start with a lower-case letter or any symbol):

data monoid-op : List > ⇥ > ! Set where

e : monoid-op ([] , tt)
• : monoid-op ([tt , tt] , tt)

monoid-sig : Signature
monoid-sig = record {sorts = >; ops = monoid-op}

The signature of monoid actions has two sorts, one for the monoid and the other for
the set on which the monoid acts.

data actMon
s

: Set where

mon : actMon
s

set : actMon
s

data actMon
o

: List actMon
s

⇥ actMon
s

! Set where

e : actMon
o

([] , mon)
* : actMon

o

([mon , mon] , mon)
• : actMon

o

([mon , set] , set)
actMon-sig : Signature
actMon-sig = record {sorts = actMon

s

; ops = actMon
o

}

Defining operations as a family indexed by arities and target sorts carries some
benefits in the use of the library: as in the above examples, the names of operations
are constructors of a family of datatypes and so it is possible to perform pattern
matching on them. Notice also that infinitary signatures can be represented in our
setting; in fact, all the results are valid for any signature, be it finite or infinite.

Algebra
An algebra A for the signature ⌃ consists of a family of sets indexed by the sorts

of ⌃ and a family of functions indexed by the operations of ⌃. We use A
s

for the

3

Gunther, Gadea, and Pagano

interpretation or the carrier of the sort s; given an operation f : [s1, ..., sn]) s, the
interpretation of f is a total function fA : A

s1 ⇥ ... ⇥A
sn ! A

s

. We formalize the
product A

s1 ⇥ ...⇥A
sn as heterogeneous vectors. The type of heterogeneous vectors

is parameterized by a set I and a family of sets indexed by I; and is indexed over a
list of I:

data HVec { I : Set} (A : I ! Set) : List I ! Set where

hi : HVec A []
B : 8 { i is} ! A i ! HVec A is ! HVec A (i :: is)

The first parameter I is implicit (written in braces), which means that Agda will
infer it by unification; notices that the constructor _B_ also takes two implicit
arguments (we use the notation 8 to skip their types). Let ⌃ be a signature and
A : sorts ⌃ ! Set, then the product A

s1⇥...⇥A
sn is formalized as HVec A [s1,. . . ,sn].

We need one more ingredient to give the formal notion of algebras: the math-
ematical definition of carriers assumes an underlying notion of equality. In type
theory one makes it apparent by using setoids (i.e. sets paired with an equivalence
relation), which were thoroughly studied by Barthe et al. [1]. Setoids are defined in
the the standard library [7] of Agda 4 as a record with three fields.

record Setoid : Set1 where

field

Carrier : Set
⇡ : Carrier ! Carrier ! Set
isEquivalence : IsEquivalence _⇡_

The relation is given as a family of types indexed over a pair of elements of the
carrier (a b : Carrier are related if the type a ⇡ b is inhabited); IsEquivalence _⇡_
is again a record whose fields correspond to the proofs of reflexivity, symmetry, and
transitivity.

The finest equivalence relation over any set is given by the propositional equality
which only equates each element with itself, thus we can endow any set with a setoid
structure with the function setoid : Set ! Setoid of standard library; vice versa,
there is a forgetful functor k_k : Setoid ! Set which returns the carrier.

Setoid morphisms are functions which preserve the equality:

record _ t�!_ (A B : Setoid) : Set where

field

h$i : k A k ! k B k
cong : 8 {a a’} ! _⇡_ A a a’ ! _⇡_ B (_h$i a) (_h$i a’)

Notice that _ t�!_ is a record parameterized on two setoids. The first field is the
function, by declaring it mixfix one can write f h$i a when f : A t�! B and a : k A k;
the second field is given by a function mapping equivalence proofs on the source
setoid to equivalence proofs on the target. Setoid morphisms will be used to give
the interpretation of operations.

4 Our formalization is based on several concepts defined in the standard library.

4

Gunther, Gadea, and Pagano

Let A : I ! Set be a family of sets and P : { i : I} ! A i ! Set a family
of predicates, we let P * : 8 { is} ! HVec A is ! Set be the point-wise extension
of P over heterogeneous vectors. We also use the point-wise extension to define the
setoid of heterogeneous vectors given a family of setoids A : I ! Setoid and write
A ⇤ is for the setoid of heterogeneous vectors with index is. Algebras are formalized
as records parameterized on the signature.

record Algebra (⌃ : Signature) : Set1 where

field

_J_K
s

: sorts ⌃ ! Setoid
_J_K

o

: 8 {ar s} ! (f : ops ⌃ (ar , s)) ! _J_K
s

⇤ ar t�! _J_K
s

s

If A is an algebra for the signature monoid-sig, then A J tt K
s

is the carrier, A J e K
o

and A J • K
o

are the interpretations of the operations. We invite the interested
reader to browse the examples to see algebras for the signatures we have shown,
which cannot be given here for lack of space.

Homomorphism
Let ⌃ be a signature and let A and B be algebras for ⌃. A homomorphism h

from A to B is a family of functions indexed by the sorts h
s

: A
s

! B
s

, such that
for each operation f : [s1, ..., sn]) s, the following holds:

h
s

(fA(a1, ..., an)) = fB(hs1 a1, ..., hsn an) (1)

Notice that this is a condition over the family of functions.
In order to formalize homomorphisms we first introduce a notation for families

of setoid morphisms indexed over sorts:

_ _ : 8 {⌃} ! Algebra ⌃ ! Algebra ⌃ ! Set
_ _ {⌃} A B = (s : sorts ⌃) ! A J s K

s

t�! B J s K
s

We make explicit the implicit parameter ⌃ because otherwise sorts ⌃ does not make
sense. 5 To enforce (1) we also define a predicate over families of setoids morphisms:

homCond : 8 {⌃} {A B} ! A B ! Set
homCond {⌃} {A} {B} h = 8 {ar s} (f : ops ⌃ (ar , s)) (as : k A J_K

s

⇤ ar k) !
h s h$i (A J f K

o

h$i as) ⇡
s

B J f K
o

h$i map h as

where _⇡
s

_ is the equivalence relation of the setoid B J s K
s

and map h is the
obvious extension of h over vectors. A homomorphism is a record parameterized by
the source and target algebras

record Homo {⌃} (A B : Algebra ⌃) : Set where

field

0_0 : A B
cond : homCond 0_0

5 In the library we use modules in order to avoid the repetition of the parameters ⌃, A, and B.

5

Gunther, Gadea, and Pagano

As expected, we have the identity homomorphism Id
h

A : Homo A A and the
composition G �

h

F : Homo A C of homomorphisms F : Homo A B and G : Homo B C.
It is also expected that F �

h

Id
h

A and F are equal in some sense. Since Agda is
based on an intensional type theory, we cannot take the definitional equality (which
distinguishes id from � n ! n + 0 as functions on naturals); instead, we equate
setoid morphisms whenever their function parts are extensionally equal:

_⇡
ext

_ : (f g : A t�! B) ! Set
f ⇡

ext

g = 8 (a : k A k) ! (f h$i a) ⇡
B

(g h$i a)

Two homomorphisms are equal when their corresponding setoid morphisms are ex-
tensionally equal:

_⇡
h

_ : 8 {⌃} {A B} ! Homo A B ! Homo A B ! Set
F ⇡

h

F’ = (s : sorts ⌃) ! 0 F 0 s ⇡
ext

0 F’ 0 s

With respect to this equality, it is straightforward to prove the associativity of the
composition _�

h

_ and that Id
h

is the identity for the composition.

2.2 Quotient and subalgebras

In order to prove the more basic results of universal algebra, we need to formalize
subalgebras, congruence relations, and quotients.

Subalgebra
A subalgebra B of an algebra A consists of a family of subsets B

s

✓ A
s

, that are
closed under the interpretation of operations; that is, for every f : [s1, . . . , sn]) s
the following condition holds

(a1, . . . , an) 2 B
s1 ⇥ · · ·⇥ B

sn implies fA(a1, . . . , an) 2 B
s

. (2)

As shown by Salvesen and Smith [22], subsets cannot be added as a construction
in intensional type theory because they lack desirable properties. If A : Set and
P : A ! Set is a predicate over A, then one can represent the subset containing the
elements on A that satisfy P as the dependent sum 6 ⌃[a 2 A] P whose inhabitants
are pairs (a , p) where a : A and p : P a. Let us consider a setoid A and a predicate
on its carrier P : k A k ! Set; first notice that we can lift the subset construction
to setoids, defining the equivalence relation (a , q) ⇡ (a’ , q’) iff a ⇡ a’. Moreover,
we might assume that P is well-defined, which means that a ⇡

A

a’ and P a imply
P a’.

WellDef : (A : Setoid) ! (P : k A k ! Set) ! Set
WellDef A P = 8 {a a’} ! a ⇡

A

a’ ! P a ! P a’

A family of well-defined predicates will induce a subalgebra; but we still need to
formalize the condition (2). Let ⌃ be a signature and A be an algebra for ⌃.

6 Do not confuse the syntax ⌃[_2_]_ of dependent sum, with a variable ⌃ : Signature

6

Gunther, Gadea, and Pagano

opClosed : (P : (s : sorts ⌃) ! k A J s K
s

k ! Set) ! Set
opClosed P = 8 {ar s} (f : ops ⌃ (ar , s)) ! (P * h!i P s) (A J f K

o

h$i_)

(Q h!i R) f can be read as the pre-condition Q implies post-condition R after
applying f; so opClosed P f asserts that if a vector a* satisfies the predicate P, then
the application of the interpretation A J f K

o

to a* satisfies P, according to Eq. (2).
In summary, given an algebra A for the signature ⌃ and a family P of predicates,
such that P s is well-defined for every sort s and P is opClosed, we can define the
SubAlgebra A P

SubAlgebra : 8 {⌃} A P ! WellDef P ! opClosed P ! Algebra ⌃

In the subalgebra, an operation f is interpreted by applying the interpretation of f
in A to the first components of the argument (and use the fact that P is op-closed
to show that the resulting value satisfies the predicate of the target sort).

Congruence and Quotients
A congruence on a ⌃-algebra A is a family Q of equivalence relations indexed by

sorts, and each of them is closed under the operations of the algebra. This condition
is called substitutivity and can be formalized using the point-wise extension of Q
over vectors: for every operation f : [s1, . . . , sn]) s

(a, b) 2 Q
s1 ⇥ · · ·⇥Q

sn implies (fA(a), fA(b)) 2 Q
s

(3)

As with predicates, we say that a binary relation over a setoid is well-defined if
it is preserved by the setoid equality; this notion can be extended over families of
relations in the obvious way. In our formalization, a congruence on an algebra A is
a family Q of well-defined, equivalence relations. The substitutivity condition (3) is
aptly captured by the generalized containment operator _=[_])_ of the standard
library, where P =[f]) Q if, for all a,b 2 A, (a,b) 2 P implies (f a, f b) 2 Q.

record Congruence (A : Algebra ⌃) : Set where

field

rel : (s : sorts ⌃) ! (k A J s K
s

k ! k A J s K
s

k ! Set)
welldef : (s : sorts ⌃) ! WellDefBin (rel s)
cequiv : (s : sorts ⌃) ! IsEquivalence (rel s)
csubst : 8 {ar s} ! (f : ops ⌃ (ar , s)) ! rel * =[A J f K

o

h$i_]) rel s

Given a congruence Q over the algebra A, we can obtain a new algebra, the
quotient algebra, by interpreting the sort s as the set of equivalence classes A

s

/Q;
the condition (3) ensures that the operation f : [s1, . . . , sn]) s can be interpreted
as the function mapping the vector ([a1], . . . , [an]) of equivalence classes into the
class [fA(a1, . . . , an)]. In Agda, we take the same carriers from A and use Q s as the
equivalence relation over k A J s K

s

k; operations are interpreted just as in A and the
congruence proof is given by csubst Q.

7

Gunther, Gadea, and Pagano

Isomorphism Theorems
The definitions of subalgebras, quotients, and epimorphisms (surjective homo-

morphisms) are related by the three isomorphims theorems. Although there is some
small overhead by the coding of subalgebras, the proofs follow very close what one
would do in paper. For proving these results we also defined the kernel and the
homomorphic image of homomorphisms.

Theorem 2.1 (First isomorphism theorem) If h : A ! B is an epimorphism,
then A/ker h ' B.

Remember that the quotient A/ker h has the same carrier as A, so h counts as
the underlying function and it respects the equivalence relation ker h by definition.
Clearly h is surjective and its injectivity is obvious.

Theorem 2.2 (Second isomorphism theorem) If �, are congruences over A,
such that ✓ �, then (A/�) ' (A/)/(�/).

In order to prove this theorem, we first prove that �/ is a congruence over A/ :
it suffices to prove the well-definedness of �/ , i.e. that (a, c) 2 , (b, d) 2 , and
(a, b) 2 � imply (c, d) 2 �; an obvious consequence of ✓ �. Notice that the
underlying carriers are the same in both cases: those of A, so the identity function
is the mediating isomorphism and the proof that it satisfies the homomorphism
condition is trivial.

Theorem 2.3 (Third isomorphism theorem) Let B be a subalgebra of A and �
be a congruence over A. Let [B]� = {K 2 A/� : K \ B 6= ;} and let �

B

be the
restriction of � to B, then (i) �

B

is a congruence over B;(ii) [B]� is a subalgebra
of A; and,(iii) [B]� ' B/�

B

.

First we define the trace of the congruence � on the subalgebra B as the restriction of
� on B; proving that it is a congruence over B involves some bureaucracy (remember
that an element of a subalgebra is a pair (a, p) such that a 2 A and p is the proof
that a satisfies the predicate defining B). For the second item, we model [B]� as a
predicate over A; it is satisfied by a 2 A if there is some b 2 B such that (a, b) 2 �.
The well-definedness of this predicate is easy (assuming (a, a0) 2 � and b 2 B with
(a, b) 2 �, one can easily prove that (a0, b) 2 �, thus b is also the witness for proving
that a0 satisfies the predicate). To prove that the predicate is closed under the
operations we take a vector of triples (as, bs, ps) consisting of a vector of elements
in A, a vector of elements in B, and the proofs ps proving that (as

i

, bs
i

) 2 �. Let
f be an operation, since B is closed we know f(b1, . . . , bn) 2 B and because �
is also closed we deduce (f(a1, . . . , an), f(b1, . . . , bn)) 2 �. Finally, the underlying
function witnessing the isomorphism [B]� ' B/�

B

is given by composing the second
projection with the first projection, thus getting an element in B.

2.3 Term algebra is initial

A ⌃-algebra A is called initial if for any ⌃-algebra B there exists exactly one homo-
morphism from A to B. We give an abstract definition of this universal property,
existence of an unique element, for any set A and any relation R

8

Gunther, Gadea, and Pagano

hasUnique {A} _⇡_ = A ⇥ (8 a a’ ! a ⇡ a’)

and initiality can be formalized directly:

Initial : 8 {⌃} ! Algebra ⌃ ! Set
Initial {⌃} A = 8 (B : Algebra ⌃) ! hasUnique (_⇡

h

_ A B)

Given a signature ⌃ we can define the term algebra T , whose carriers are sets of
well-typed words built up from the function symbols. Sometimes this universe is
called the Herbrand Universe and is inductively defined:

t1 2 T
s1 · · · t

n

2 T
sn f : [s1, ..., sn]) s

f (t1, ..., tn) 2 T
s

This inductive definition can be written directly in Agda:

data HU {⌃ : Signature} : (s : sorts ⌃) ! Set where

term : 8 {ar s} ! (f : ops ⌃ (ar 7! s)) ! HVec HU ar ! HU s

We use propositional equality to turn each HU
s

into a setoid, thus completing the
interpretation of sorts. To interpret an operation f : [s1, . . . , sn]) s we map the
vector ht1,. . . ,tni : HVec HU [s1,. . . ,sn] to term f ht1,. . . ,tni; we omit the proof of
cong, which is too long and tedious to be shown.

|T| : (⌃ : Signature) ! Algebra ⌃
|T| ⌃ = record {_J_K

s

= setoid � (HU {⌃});_J_K
o

= |_|
o

}
where | f |

o

= record {_h$i_ = term f; cong = ...}

Terms can be interpreted in any algebra A, yielding an homomorphism h
A

: T ! A

h
A

(f(t1, . . . , tn)) = fA (h
A

t1, ..., hA t
n

) .

We cannot translate this definition directly in Agda, instead we have to mutually
define |h| and its extension over vectors |h*|

|h| : 8 {⌃} ! (A : Algebra ⌃) ! {s : sorts ⌃} ! HU s ! k A J s K
s

k
|h| A (term f ts) = A J f K

o

h$i (|h*| ts)

It is straightforward to prove that |h| preserves propositional equality and satisfies
the homomorphism condition by construction. To finish the proof that |T| ⌃ is
initial, we prove, by recursion on the structure of terms, that any pair of homomor-
phisms are extensionally equal.

3 Equational Logic

In this section we introduce the notion of (conditional) equational theories and the
corresponding notion of satisfiability of theories by algebras. Moreover we formalize
(conditional) equational logic as presented by Goguen and Lin [12] and prove that
the deduction system is sound and complete.

9

Gunther, Gadea, and Pagano

3.1 Free algebra with variables

The term algebra we have just defined contained only ground terms, i.e. terms with-
out variables. Given a signature ⌃ and X : sorts ⌃ ! Set a family of variables, we
define a new signature extending ⌃ with X by taking the variables as new constants
(i.e. , operations with arity []).

_L_M : (⌃ : Signature) ! (X : sorts ⌃ ! Set) ! Signature
⌃ L X M = record {sorts = sorts ⌃; ops = ops’}

where ops’ ([] , s) = ops ⌃ ([] , s)] X s
ops’ (ar , s) = ops ⌃ (ar , s)

Note that it is easy to refer to constant operations and extend them, because we
indexed the set of operations on their arity and target sort.

It is easy to turn the term algebra of the extended signature into an algebra for
the original signature:

|T|_L_M : (⌃ : Signature) ! (X : sorts ⌃ ! Set) ! Algebra ⌃
|T| ⌃ L X M = record {_J_K

s

= |T| (⌃ L X M) J_K
s

, _J_K
o

= io}
where io {[]} f = |T| (⌃ L X M) J inj1 f K

o

io {ar} f = |T| (⌃ L X M) J f K
o

The only difference with the algebra of ground terms is that we inject constants from
⌃ to distinguish them from variables. In order to interpret terms with variables we
need environments to give meaning to variables.

Let Env X A = 8 {s} ! X s ! k A J s K
s

k be the set of environments
from X to A. The free algebra |T| ⌃ L X M has the universal freeness property:
given A : Algebra ⌃ and an environment ✓ : Env X A, there exists an unique
homomorphism J_K✓ : Homo (|T| ⌃ L X M) A such that J x K✓ = ✓ (x) for x 2 X.

3.2 Satisfiability and provability

Equations
In the mono-sorted setting an equation is a pair of terms where all the variables

are assumed to be universally quantified and an equational theory is a (finite) set
of equations. In a multi-sorted setting both sides of an equation should be terms
of the same sort. Moreover we allow quasi-identities which we write as conditional
equations:

t = t0 if t1 = t01, . . . , tn = t0
n

.

Let ⌃ be a signature and X : sorts ⌃ ! Set be a family of variables for ⌃. An
identity e : Eq ⌃ X s is a pair of (open) terms with sort s. A conditional equation
is modelled as record with fields for the conclusion and the conditions, modelled as
an heterogeneous vector of sorted identities . We declare a constructor to use the
lighter notation

V
eq if (ar , eqs) instead of record {eq = e; cond = (ar , eqs)}.

record Equation (⌃ : Signature) (X : sorts ⌃ ! Set) (s : sorts ⌃) : Set where

constructor
V

if
field

10

Gunther, Gadea, and Pagano

eq : Eq ⌃ X s
cond : ⌃[ar 2 List (sorts ⌃)] (HVec (Eq ⌃ X) ar)

A theory over the signature ⌃ is given by a vector of conditional equations.

Theory : (⌃ : Signature) ! (X : sorts ⌃ ! Set) ! (ar : List (sorts ⌃)) ! Set
Theory ⌃ X ar = HVec (Equation ⌃ X) ar

We deviate from Goguen’s and Lin’s in that we assume that all the equations of a
theory share the same set of variables, while they assume that each equation has its
own set of quantified variables. Clearly, this simplification is harmless; if we have a
theory where each equation has its own set of variables, we can take the union of
those sets as the common set. As stressed by Goguen and Meseguer [14], quantifying
equations is essential:

[. . .] the naive unsorted rules of deduction for equational logic (namely, reflexivity,
symmetry, transitivity and substitutivity) are not sound when extended to the
many-sorted case in the obvious way; [. . .] adding variable declarations to these
rules yields a rule set that is sound.

Satisfiability
Let ⌃ be a signature and A be an algebra for ⌃. We say that a conditional

equation t = t0 if t1 = t01, . . . , tn = t0
n

is satisfied by A if for any environment
✓ : X ! A, JtK✓ = Jt0K✓, whenever Jt

i

K✓ = Jt0
i

K✓ for 1 6 i 6 n. In order to formalize
satisfiability we first define when an environment models an equation.

_|=
e

_ : 8 {⌃ X A} ! (✓ : Env X A) ! {s : sorts ⌃} ! Eq ⌃ X s ! Set
_|=

e

_ ✓ {s} (t , t’) = _⇡_ (A J s K
s

) (J t K ✓) (J t’ K ✓)

Using the point-wise extension of this relation we can write directly the notion of
satisfiability.

|= : 8 {⌃ X} (A : Algebra ⌃) ! {s : sorts ⌃} ! Equation ⌃ X s ! Set
A |= (

V
eq if (, eqs)) = 8 ✓ ! ((✓ |=

e

_) * eqs) ! ✓ |=
e

eq

We say that A is a model of the theory E if it satisfies each equation in E. As usual
an equation is a logical consequence of a theory, if every model of the theory satisfies
the equation.

_|=
m

_ : 8 {⌃ X ar} ! (A : Algebra ⌃) ! (E : Theory ⌃ X ar) ! Set
A |=

m

E = (A |=_) * E

_ |=⌃ _ : 8 {⌃ X ar s} ! (E : Theory ⌃ X ar) ! (e : Equation ⌃ X s) ! Set
_ |=⌃ _ {⌃} E e = (A : Algebra ⌃) ! A |=

m

E ! A |= e

Provability
As noticed by Huet and Oppen [18], the definition of a sound deduction system

for multi-sorted equality logic is more subtle than expected. We formalize the system

11

Gunther, Gadea, and Pagano

E ` 8X, t = t
E ` 8X, t0 = t1
E ` 8X, t1 = t0

E ` 8X, t0 = t1 E ` 8X, t1 = t2
E ` 8X, t0 = t2

8Y, t = t0 if t1 = t01, . . . , tn = t0
n

2 E E ` 8X, �(t
i

) = �(t0
i

)
� : Y ! T⌃(X)

E ` 8X, �(t) = �(t0)

E ` 8X, t1 = t01 · · · E ` 8X, t
n

= t0
n f : [s1, ..., sn])⌃ s

E ` 8X, f (t1, . . . , tn) = f (t01, . . . , t
0
n

)

Fig. 1. Deduction system

presented in [12], shown in Fig. 1. The first three rules are reflexivity, symmetry and
transitivity; the fourth rule, called substitution, allows to instantiate an axiom with a
substitution �, provided one has proofs for every condition of the axiom; 7 finally, the
last rule internalizes Leibniz rule, for replacing equals by equals in subterms. Notice
that we can only prove identities and not quasi-identities. We define the relation
of provability as an inductive type, parameterized in the theory E, and indexed
by the conclusion of the proof. For conciseness, we only show the constructor for
transitivity:

data _`_ {⌃ X ar} (E : Theory ⌃ X ar) : 8 {s} ! Eq ⌃ X s ! Set where

ptrans : 8 {s} {t0 t1 t2} !
E ` (t0 , t1) ! E ` (t1 , t2) ! E ` (t0 , t2)

Let E be a theory over a signature ⌃. It is straightforward to define a setoid over
|T| ⌃ L X M by letting t1 ⇡ t2 if E ` t1 ⇡ t2; this equivalence relation (thanks to the
first three rules) is a congruence (because of the last rule) over the term algebra.
We can also use the facility provided by the standard library to write proofs with
several transitive steps more nicely, as can be seen in the next example.

The proofs of soundness and completeness are proved as in the mono-sorted
case. For soundness one proceeds by induction on the derivations; completeness is a
consequence that the quotient of the term algebra by provable equality is a model.

Theorem 3.1 (Soundness and Completeness) E ` t ⇡ t0 iff E |=⌃ t ⇡ t0.

Let us remark that completeness does not imply that there is a decidability algorithm
for every theory; i.e. this result gives no decision procedure at all.

Let E and E0 be two theories over the signature ⌃. We say that E is stronger
than E0 if every axiom e 2 E0 can be deduced from E, written E `TE0. Obviously
if E is stronger than E0, then any equation that can be deduced from E0 can also
be deduced from E and any model of E is also a model of E0.

3.3 A theory for Boolean Algebras

As an example we show a fragment of the formalization of a Boolean Theory dis-
cussed in [21]. 8 The signature is mono-sorted, so we use the unit type as its only
sort.

7 In our formalization this rule is slightly less general because we assume all the equations are quantified
over the same set of variables.
8 The full code is available at https://cs.famaf.unc.edu.ar/~mpagano/universal-algebra/html/

Examples.EqBool.html.

12

Gunther, Gadea, and Pagano

data bool-ops : List > ⇥ > ! Set where

f t : bool-ops ([] 7! tt)
neg : bool-ops ([tt] 7! tt)
and or : bool-ops (([tt , tt]) 7! tt)

bool-sig : Signature
bool-sig = record {sorts = >; ops = bool-ops}

We let X tt = N be the set of variables, and let Form stand for terms over
bool-sig L Vars M with the following smart-constructors:

true false : Form
true = term (inj1 t) hi
false = term (inj1 f) hi
p q : Form
p = term (inj2 0) hi
q = term (inj2 1) hi
^ : Form ! Form ! Form
� ^ = term and h� , i
¬ : Form ! Form
¬ � = term neg h�i

We show only two of the twelve axioms of the theory E-Bool:

commAnd leastDef : Equation bool-sig Vars tt
commAnd =

V
(p ^ q) ⇡ (q ^ p) if ([] , hi)

leastDef =
V

(p ^ (¬ p)) ⇡ false if ([] , hi)
E-bool : Theory bool-sig Vars [tt , tt , . . .]
E-bool = h commAnd , leastDef , . . . i

The following example shows an equational proof using the facility for equational rea-
soning provided by the standard library of Agda. In the justification steps we use the
substitution rule (called psubst) and the pattern-synonyms commAndAx,leastDefAx
as short-hands for commAnd 2 E-bool and leastDef 2 E-bool, respectively.

p1 : E-bool ` (
V

¬ p ^ p ⇡ false)
p1 = begin
¬ p ^ p
⇡h psubst commAndAx �1 ⇠hi i
p ^ ¬ p
⇡h psubst leastDefAx idSubst ⇠hi i
false
⌅

The relevant actions of the substitution �1 are �1 p = ¬ p and �1 q = p.

13

Gunther, Gadea, and Pagano

(prj)

[s1, . . . , sn] �⌃]i : si
f : [s1, ..., sn])⌃ s ar �⌃t1 : s1 · · · ar �⌃t

n

: s
n

(op)

ar �⌃f (t1, ..., tn) : s

Fig. 2. Type system for formal terms

4 Morphisms between signatures

The propositional calculus of Dijkstra and Scholten [8] is an alternative boolean
theory whose only non-constant operations are equivalence and disjunction.

data bool-ops’ : List > ⇥ > ! Set where

f’ t’ : bool-ops’ ([] 7! tt)
equiv’ or’ : bool-ops’ ([tt , tt] 7! tt)

bool-sig’ : Signature
bool-sig’ = record {sorts = > , ops = bool-ops’}

It is clear that one can translate recursively any term over bool-sig to a term in
bool-sig’ preserving its semantics. An alternative and more general way is to specify
how to translate each operation in bool-sig using operations in bool-sig’. In this
way, any bool-sig’-algebra can be seen as a bool-sig-algebra: a bool-sig-operation f
is interpreted as the semantics of the translation of f. In particular, the translation
of formulas is recovered as the initial homomorphism between |T| bool-sig and the
transformation of |T| bool-sig’. In this section we formalize the concepts of derived
signature morphism and reduct algebra as introduced, for example, by Sanella et
al. [23].

4.1 Derived signature morphism

Although the disjunction from bool-sig can be directly mapped to its namesake in
bool-sig’, there is no unary operation in bool-sig’ to translate the negation. In fact, we
should be able to translate an operation as a combination of operations in bool-sig’
and also refer to the arguments of the original operation.

We introduce the notion of formal terms which are formal composition of pro-
jections and operations. We introduce a type system, shown in Fig. 2, ensuring
the well-formedness of these terms: the contexts are arities, i.e. lists of sorts, and
identifiers are pointers (like de Bruijn indices). It can be formalized as an inductive
family parameterized by arities and indexed by sorts.

data _�_ (ar’ : Arity ⌃) : (sorts ⌃) ! Set where

#_ : (n : Fin (length ar’)) ! ar’ � (ar’ !! n)
|$| : 8 {ar s} ! ops ⌃ (ar) s) ! HVec (ar’ �_) ar ! ar’ � s

A formal term specifies how to interpret an operation from the source signature in
the target signature. The arity ar’ specifies the sort of each argument of the original
operation. For example, since the operation neg is unary, we can use one identifier
when defining its translation. Notice that bool-sig and bool-sig’ share the sorts; in
general, one also considers a mapping between sorts.

A derived signature morphism consists of a mapping between sorts and a mapping
from operations to formal terms:

14

Gunther, Gadea, and Pagano

record _,!_ (⌃
s

⌃
t

: Signature) : Set where

field

,!
s

: sorts ⌃
s

! sorts ⌃
t

,!
o

: 8 {ar s} ! ops ⌃
s

(ar , s) ! (map ,!
s

ar) � (,!
s

s)

We show the action of the morphism on the operations neg and and

ops,! : 8 {ar s} ! (f : bool-ops (ar 7! s)) ! map id ar � s
ops,! neg = equiv’ |$| hp , f’i
ops,! and = equiv’ |$| hequiv’ |$| hp , qi , or’ |$| hp , qii

where p = # zero and q = # (suc zero).

4.2 Transformation of Algebras

A signature morphism m : ⌃
s

,! ⌃
t

induces a functor from ⌃
t

-algebras to ⌃
s

-
algebras. Given a ⌃

t

-algebra A, we denote with hAi the corresponding ⌃
s

-algebra,
which is known as the reduct algebra with respect to the morphism m. Let us sketch
the construction of the functor on algebras: the interpretation of a ⌃

s

-sort s is given
by hAi

s

= A(ms) and for interpreting an operation f in the reduct algebra hAi we
use the interpretation of the formal term mf , which is recursively defined by

J_K
t

: 8 {ar s} ! ar � s ! k A J ar K
s

* k ! k A J s K
s

k
J # n K

t

as = as !!v n
J f |$| ts K

t

as = A J f K
o

h$i J ts K
t

* as

Identifiers denote projections and the application of the operation f to formal terms
ts is interpreted as the interpretation of f applied to the denotation of each term in
ts, the function J_K

t

* extends J_K
t

to vectors.
We can formalize the reduct algebra in a direct way, however the interpretation

of operations is a little more complicated, since we need to convince Agda that any
vector vs : HVec (A J_K

s

� ,!
s

) is has also the type HVec A (map ,!
s

is), which is
accomplished by reindex-ing the vector (we omit the proof of cong):

module ReductAlg (m : ⌃
s

,! ⌃
t

) (A : Algebra ⌃
t

) where

h_i
s

: ! (s : sorts ⌃
s

) ! Setoid
h s i

s

= A J ,!
s

m s K
s

h_i
o

: 8 {ar s} ! ops ⌃
s

(ar) s) ! (h_i
s

) ⇤ ar t�! h s i
s

h f i
o

= record {_h$i_ = J ,!
o

m f K
t

� reindex (,!
s

m); cong = ...}
_h_i : Algebra ⌃

s

_h_i = record {_J_K
s

= h_i
s

, _J_K
o

= h_i
o

}

The action of the functor on homomorphisms is also straightforward, we do not it
show for lack of space.

15

Gunther, Gadea, and Pagano

4.3 Translation of theories

From a signature morphism m : ⌃
s

,! ⌃
t

one gets the translation of ground ⌃
s

terms as the initial homomorphism from |T| ⌃
s

to h |T| ⌃
t

i. With an appropriate
extension to variables, this translation applied to a theory E

s

over ⌃
s

yields the
theory fE

s

over ⌃
t

. Moreover if A
t

|= fE
s

, one would think that the reduct hA
t

i is a
model of the original theory, i.e. hA

t

i |= E
s

. Even better, if E
t

is a stronger theory
than the translated theory fE

s

and if A
t

is a model for E
t

, we would like that the
reduct algebra models E

s

. In Agda such a result would be realized as a function
|=,! with the following type (where ,!* E

s

is the translation of E
s

):

|=,! : 8 A
t

E
t

E
s

! A
t

|=
m

E
t

! (E
t

`T ,!* E
s

) ! h A
t

i |=
m

E
s

With the morphism m : ⌃
s

,! ⌃
t

, one can define the translation of open terms
from |T| ⌃

s

L X
s

M to |T| ⌃
t

L X
t

M using initiality if we also have a renaming
function ,!

v

: {s : sorts ⌃
s

} ! X
s

s ! X
t

(m ,!
s

s). In general, however, we
cannot prove the satisfaction property : if a ⌃

t

-algebra models the translation of
an equation, then its reduct models the original equation. The technical issue is
the impossibility of defining a ⌃

t

-environment from a ⌃
s

-environment. There is a
well-known solution which consists on restricting the set of variable of the target
signature by letting X

t

=
S

s2⌃s,t=m,!s

X
s

. Under this restriction, we can prove the
satisfaction property and furthermore define the function |=,!. Such a restriction
over the set of variables seems to us as an impediment, which can be alleviated if
the original variables of E

t

are included in the calculated set of variables.

5 Conclusions

As far as we know, heterogeneous universal algebra has not attracted a great interest
in the academic community of type theory. In this paper, we have developed in Agda
a library with the main concepts of heterogeneous universal algebra, up to the proof
of the three isomorphisms theorems and the freeness of the term algebra over a set
of variables. In order to define the term algebra we have introduced heterogeneous
vectors, which later turned out to be very useful in other parts of the library, for
example as the set of axioms of finite theories and as premises of deduction rules.
We further introduced a formal system for conditional equational logic and proved
its soundness and completeness with respect to Goguen and Meseguer semantics
(we refer the reader to [27] for a deeper explanation of this result recasting it on a
categorical setting). Finally, we defined a novel representation for (derived) signature
morphisms and its associated contra-variant functor on algebras. We also showed
that, under some restrictions, this functor also preserves models.

Related Work. Let us contrast our work with other formalizations covering some
aspects of universal algebra. As far as we know, since Capretta’s [6] first mech-
anization of universal algebra and its further extension to equational logic in his
thesis, the closest new works are Kahl’s [19]’s formalization of allegories and the de-
velopment of the algebraic hierarchy lead by Spitters [24]. Capretta considered only
finitary signatures and his work does not encompass signature morphisms. Spitters
and his co-workers developed some very preliminary definitions of universal algebra,

16

Gunther, Gadea, and Pagano

because their goal is to use the notion of variety to define the algebraic hierarchy
up to the construction of the reals; in particular they use Coq’s typeclasses to have
a cleaner representation of algebraic structures.

Future Work. We think that this development opened the path to several fur-
ther work, in particular: (i) a natural step is to formalize institutions;(ii) consider
algebras of binding structures as proposed by [9];(iii) introduce multi-sorted rewrit-
ing;(iv) formalize more of the mathematical theory behind universal algebra, for
example Birkhoff’s (quasi)-variety characterization; and(v) explore the idea of us-
ing completeness and soundness for automating the proof of identities in algebraic
structures.

References

[1] Barthe, G., V. Capretta and O. Pons, Setoids in type theory, J. Funct. Program. 13 (2003), pp. 261–293.

[2] Birkhoff, G., On the structure of abstract algebras, Mathematical Proceedings of the Cambridge
Philosophical Society 31 (1935), p. 433–454.

[3] Birkhoff, G. and J. D. Lipson, Heterogeneous algebras, J. of Combinatorial Theory 8 (1970), pp. 115–
133.

[4] Bove, A., P. Dybjer and U. Norell, A brief overview of agda - A functional language with dependent
types, in: TPHOLs, Lecture Notes in Computer Science 5674 (2009), pp. 73–78.

[5] Burstall, R. M., Proving Properties of Programs by Structural Induction, The Computer Journal 12
(1969), pp. 41–48.

[6] Capretta, V., Universal algebra in type theory, in: International Conference on Theorem Proving in
Higher Order Logics, Springer, 1999, pp. 131–148.

[7] Danielsson, N. A. and The Agda Team, The agda standard library, version 0.12, https://github.com/
agda/agda-stdlib (2015).

[8] Dijkstra, E. W. and C. S. Scholten, “Predicate Calculus and Program Semantics,” Springer New York,
New York, NY, 1990.

[9] Fiore, M. and O. Mahmoud, Second-order algebraic theories, in: International Symposium on
Mathematical Foundations of Computer Science, Springer, 2010, pp. 368–380.

[10] Goguen, J. A., Memories of ADJ, Bulletin of the EATCS 39 (1989), pp. 96–102.

[11] Goguen, J. A. and R. M. Burstall, Institutions: Abstract model theory for specification and
programming, J. ACM 39 (1992), pp. 95–146.

[12] Goguen, J. A. and K. Lin, Specifying, programming and verifying with equational logic., in: We Will
Show Them! Essays in Honour of Dov Gabbay, Volume Two (2005), pp. 1–38.

[13] Goguen, J. A. and J. Meseguer, Completeness of many-sorted equational logic, SIGPLAN Notices 17
(1982), pp. 9–17.

[14] Goguen, J. A. and J. Meseguer, Remarks on remarks on many-sorted equational logic, SIGPLAN
Notices 22 (1987), pp. 41–48.

[15] Goguen, J. A., J. W. Thatcher, E. G. Wagner and J. B. Wright, Abstract data types as initial algebras
and the correctness of data representations, in: Conference on Computer Graphics, Pattern Recognition,
& Data Structure, UCLA (1975), pp. 89–93.

[16] Goguen, J. A., J. W. Thatcher, E. G. Wagner and J. B. Wright, Initial algebra semantics and continuous
algebras, J. ACM 24 (1977), pp. 68–95.

[17] Gonthier, G., A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. L. Roux, A. Mahboubi,
R. O’Connor, S. O. Biha, I. Pasca, L. Rideau, A. Solovyev, E. Tassi and L. Théry, A machine-checked
proof of the odd order theorem, in: ITP, Lecture Notes in Computer Science 7998 (2013), pp. 163–179.

[18] Huet, G. and D. C. Oppen, Equations and rewrite rules: a survey, Technical Report STAN//CS-TR-
80-785, Stanford University, Department of Computer Science (1980).

17

Gunther, Gadea, and Pagano

[19] Kahl, W., Dependently-typed formalisation of relation-algebraic abstractions, in: RAMICS, Lecture
Notes in Computer Science 6663 (2011), pp. 230–247.

[20] Meinke, K. and J. V. Tucker, Universal algebra, in: S. Abramsky and T. S. E. Maibaum, editors,
Handbook of Logic in Computer Science (Vol. 1), Oxford University Press, Inc., New York, NY, USA,
1992 pp. 189–368.

[21] Rocha, C. and J. Meseguer, Theorem proving modulo based on boolean equational procedures, in:
RelMiCS, Lecture Notes in Computer Science 4988 (2008), pp. 337–351.

[22] Salvesen, A. and J. M. Smith, The strength of the subset type in Martin-Löf’s type theory, in:
Proceedings of the Third Annual Symposium on Logic in Computer Science (LICS ’88), Edinburgh,
Scotland, UK, July 5-8, 1988 (1988), pp. 384–391.

[23] Sannella, D. and A. Tarlecki, “Foundations of algebraic specification and formal software development,”
Springer Science & Business Media, 2012.

[24] Spitters, B. and E. van der Weegen, Type classes for mathematics in type theory, Mathematical
Structures in Computer Science 21 (2011), pp. 795–825.

[25] Tarlecki, A., Some nuances of many-sorted universal algebra: A review, Bulletin of the EATCS 104
(2011), pp. 89–111.

[26] Thatcher, J. W., E. G. Wagner and J. B. Wright, More on advice on structuring compilers and proving
them correct, Theoretical Computer Science 15 (1981), pp. 223–249.

[27] Vidal, J. C. and J. S. Tur, On the completeness theorem of many-sorted equational logic and the
equivalence between Hall Algebras and Bénabou theories, Reports on Mathematical Logic 40 (2006),
pp. 127–158.

18

Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Formal Meta-level Analysis Framework for
Quantum Programming Languages

Mohamed Yousri Mahmoud

1
Amy P. Felty

2

School of Electrical Engineering and Computer Science
University of Ottawa, Ottawa, Canada

Abstract

The design and development of quantum programming languages (QPLs) is an important and active area of
quantum computing. This paper addresses the problem of developing a standard methodology for verifying
a QPL against major quantum computing concepts. We propose a framework dedicated to the meta-level
analysis of QPLs, in particular, functional quantum languages. To this aim, we choose the Hybrid system
as the tool in which to build our framework. Hybrid is a logical framework that supports higher-order
abstract syntax, on top of which we develop an intuitionistic linear specification logic used for reasoning
about QPLs. We provide a formal proof of some important meta-theoretic properties of this logic, and in
addition, showcase a number of examples that can be tackled under the proposed framework.

Keywords: Quantum Lambda Calculus, Linear Logic, Hybrid, Coq

1 Introduction

Quantum computing has the potential to radically change the way computing is
done. The existence of large scale quantum machines would increase computa-
tional power exponentially and provide unbreakable security systems [2]. Quantum
programming languages (QPLs) are an integral element required for achieving suc-
cessful quantum machines, as they introduce quantum concepts at a high-level,
allowing better understanding of quantum aspects and increasing access to research
in quantum domains. QPLs were initiated by Knill [6] who provided a number of
conventions to express quantum algorithms (i.e., quantum pseudo-code). The de-
velopment of QPLs has evolved for both imperative languages, e.g., [10] and [12],
and functional languages, e.g., [15] and [11]. QPLs are based on the QRAM com-
putation model: the quantum state or data is stored in a RAM and the program is
a sequence of primitive quantum operations (or controls) that update such a global
quantum state [6]. There is a trade-o↵ between o↵ering a high-level quantum lan-
guage and capturing the full quantum aspects, e.g., no-cloning and superposition

1 Email: myousri@uottawa.ca
2 Email: afelty@uottawa.ca

c�2017 Published by Elsevier Science B. V.

Mahmoud and Felty

Hybrid HOAS

OL Syntax

Mechanized Meta-theory of OL (e.g., type safety, preservation, progress,
soundness)

OL Types

Intuitionistic Linear
S. L.

OL Operational
Semantics

Fig. 1. Formal Meta-level Analysis Framework QPLs

properties. Accordingly, it is very crucial, when developing a QPL, to ensure that
the proposed language, the computational model, and the operational semantics (as
well as the type system if any) is practical, in terms of how the language respects
the quantum properties and how it deals with quantum non-determinism (i.e., a
quantum storage unit can hold both the zero and one values at the same time) and
the measurement process (i.e., determining the exact value of a storage unit based
on some probabilities). In this paper, we introduce a formal framework that aims to
standardize meta-level analysis of quantum languages. Such a framework can help
a language designer to focus on enhancing the language specifications itself, leaving
many of the details of correctness checking to the proposed framework. As a result,
it becomes easier to make changes to the language as it evolves and study the e↵ect
of these changes, updating only the parts of proofs that are a↵ected at each step.

Our concern in this paper is with functional quantum programming languages
which typically map to quantum lambda calculi [13]. The major di↵erence that a
quantum calculus provides with respect to ordinary lambda calculus is that it ad-
dresses resource limitations: a quantum variable (i.e., quantum bit) is not duplicable
(i.e., no cloning) and should be consumed only once and cannot be erased. This
makes linear logic a good candidate for modeling the operational semantics for both
typed and untyped quantum lambda calculi. To avoid involving the user in low-level
details of language formalization, e.g., variable binding and substitution, we opt to
use the Hybrid system [5], a two-level logical framework that supports higher-order
abstract syntax (HOAS), implemented in both the Coq and Isabelle/HOL proof
assistants. Figure 1 illustrates the design of our proposed framework for meta-
level analysis of QPLs. OL stands for object language, which is the programming
language subject to analysis. OL syntax contains the encoding of all possible ex-
pressions of a language (which often includes expressions that are not correct with
respect to a well-formedness or other kind of judgment such as typing or evaluation).
The use of Hybrid involves defining a specification logic (SL). An SL is developed
independently from any OL, but is customizable through a parameter for atomic
predicates used to express OL judgments, e.g., typing and evaluation rules. An
SL is generally the formalization of a sequent calculus. We choose to implement
intuitionistic linear logic which is well-suited to modeling the QRAM computation
model that allows both intuitionistic resources (i.e., controls) and linear resources
(i.e., quantum data).

The middle block defines the syntax and basic properties of the types supported
by an OL. Of course, this block is not included in the case of untyped quantum
lambda calculi. QPL designers often choose to define untyped calculi to capture

2

Mahmoud and Felty

the maximum amount of quantum features (i.e., to build a quantum Turing complete
language), which could be sacrificed by adding certain type systems. Nevertheless,
the proposed framework supports both Turing complete and incomplete QPLs. The
formalized syntax and semantics are then used to reason about the OL, e.g., proving
subject reduction (type soundness) or Turing completeness.

The proposed framework will be implemented in both Coq and Isabelle/HOL.
This paper presents completed work on the Coq version [8], which builds on earlier
(unpublished) work [7] where we formalize the Proto-Quipper language [11] along
with some of its meta-theory. Here, we generalize the ideas from that case study
to develop a general framework, focusing on two main ideas: generalizing the SL
and providing a more complete and general set of meta-level properties that can be
reused by many OLs, and illustrating its use on two di↵erent QPLs, namely Proto-
Quipper and Q [15]. Although the work on Q is in its early stages, it illustrates the
general nature of the framework. The rest of the paper discusses each box of Fig. 1
in more detail.

2 Encoding OL Syntax in Hybrid

The first file in the Coq library implementing Hybrid (bottom right of Fig. 1)
introduces a special type expr, defined as an inductive type, that encodes a de
Bruijn representation of �-terms. The inductive definition has one parameter con
which is filled in when defining the constants used to represent an OL. The two
constructors for expr that we will see in this paper are CON of type con -> expr

and APP of type expr -> expr -> expr, which encode constants and application,
respectively, of de Bruijn terms. The library then includes a series of definitions used
to define the operator lambda of type (expr -> expr) -> expr, which provides the
capability to express OL syntax using HOAS. Expanding its definition fully down to
primitives gives the low-level de Bruijn representation, which is hidden from the user
when reasoning about meta-theory. One other predicate from the Hybrid library
that will appear later is abstr, which is applied to arguments of lambda and rules
out functions of type (expr ! expr) that do not adequately encode object-level
syntax. (See [5] for its definition and a discussion of adequacy of HOAS encodings.)

We now give two examples filling in the middle right box in Fig. 1.

Example 1. The following is a segment of the context-free grammar of Proto-
Quipper [11], a typed QPL:

a ::= x | q | ha1, a2i | �x.a | if a1 then a2 else a3 | let hx, yi = a1 in a2

where x is a term variable, q is a quantum variable, and ha1, a2i is tensor product

of two Proto-Quipper expressions. The let-statement has the constraint that the
variables x and y should be available at the same time. Typically, x and y evaluate
to quantum bits which are linear resources. For this object language, the type con
is instantiated with the type Econ, implemented as:

Inductive Econ: Set :=

Qvar: nat -> Econ| qPROD: Econ | qABS: Econ | qIF: Econ | qLET: Econ.

3

Mahmoud and Felty

We do not represent term variables explicitly since they appear as bound variables
in the HOAS representation of OL terms. Using these constants, we then define the
OL operators. For example:

Definition Prod: qexp -> qexp -> qexp :=

fun e1:qexp => fun e2:qexp => (APP (APP (CON qPROD) e1) e2).

Definition Let: (qexp -> qexp-> qexp) -> qexp -> qexp :=

fun f:qexp->qexp->qexp => fun e1:qexp =>

(APP (CON qLET) (APP (lambda

(fun x => (lambda (fun y => f x y)))) e1)).

The type qexp is the type expr discussed above with the parameter con instantiated
with Econ for this OL. Note the use of lambda in defining an HOAS encoding of the
let statement. With this definition in place, the de Bruijn representation is hidden,
and does not appear in further proof development.

Example 2. The following is an example of a segment of the context-free grammar
of Q [15], an untyped QPL:

a ::= x | r | ha1, a2, ..., ani | �!x.a | �x.a

where r refers to quantum variables, ha1, a2, ..., ani is a tensor product of n Q ex-
pressions (or a linear pattern). A major di↵erence between Q and Proto-Quipper
is that Q allows two types of lambda abstraction: over linear variables where the
bound variable appears in the function body only once, and over duplicable variables
where bound variables may appear zero or more times. Proto-Quipper distinguishes
these two kinds of abstraction using its type system (which we do not present here,
see [8]). Accordingly, the definition of con for Q will include two distinct constants
for the two abstractions, namely LABS and IABS. It also has constants qPROD and
Qvar as before. Linear and intuitionistic abstraction are defined using an HOAS
representation as follows:

Definition LAbs: (qexp-> qexp) -> qexp := fun f:qexp->qexp =>

APP (CON LABS) (lambda (fun x => f x)).

Definition IAbs: (qexp-> qexp) -> qexp:= fun f:qexp->qexp =>

APP (CON IABS) (lambda (fun x => f x)).

3 Encoding the SL and OL Inference Rules

The sequents of the intuitionistic linear logic we adopt as an SL (bottom left of
Fig. 1) have the form �;� `⇧ G, where G is a formula, � is an intuitionistic context
of formulas, � is a linear context, and � and � contain only atomic formulas. The
restriction to atomic formulas is su�cient for the examples we have considered
so far, but it should be straightforward to extend the SL to allow more general
formulas in the contexts, as was done for an intuitionistic SL in [1]. ⇧ is a set of
formulas expressing the inference rules of an OL, which we omit when presenting
the sequent rules because it is fixed for each OL and does not change within a proof.
They can be considered as a fixed subset of �. We include the connectives ⌦ for
multiplicative conjunction, & for additive conjunction, (for linear implication,)

4

Mahmoud and Felty

for intuitionistic implication, and > for the universal resource consumer. Below are
some sample rules of this logic (where . represents an empty context):

l init
�;A ` A

i init
�, A; . ` A

>-R
�;� ` >

�;�1 ` B �;�2 ` C

⌦-R
�;�1,�2 ` B ⌦ C

�;� ` B �;� ` C

&-R
�;� ` B&C

There are two initial rules, the linear rule (l init) strictly prohibits the existence of
any hypothesis inside � except A, and does not care about the contents of �. The
intuitionistic rule (i init) strictly requires an empty linear context, whereas A should
be in the intuitionistic context. We can use ⌦ if its operands can be proven linearly
at the same time, i.e., they do not share linear resources. On the other hand,
additive conjunction is used when the operands are sharing the linear resources.
Because they both consume all resources, only one of them can be made available
at a time. Missing from this set are rules for each of the implication connectives
()-R and (-R), the standard introduction rule for universal quantification (8-R),
and a form of a backchain rule which encapsulates the L rules, and is standard for
two-level systems (see [5]).

There are a number of formalizations of linear logic, e.g., [3] in Abella and [9]
in Coq. The main purpose of these formalizations is handling the meta-analysis of
di↵erent fragments of linear logic, not using them as intermediate logics in which
to study object languages such as QPLs. Our objective is broader since it includes
both. Our formalization is inspired by the work in [5], which implements ordered in-
tuitionistic linear logic as a specification logic in the Isabelle/HOL version of Hybrid,
where it is used to study a continuation-machine presentation of the operational se-
mantics of a functional language that is much simpler than the QPLs considered
here.

The SL sequent rules are formalized as an inductive predicate seq: list atm

-> list atm -> oo -> Prop, where the type atm is the parameter for atomic
predicates, implemented for each OL. Formulas of the sequent calculus are encoded
as an inductive type oo using an HOAS representation where Conj represents ⌦, And
represents &, and atom coerces atomic formulas (type atm) to formulas (type oo).
The first list of atoms refers to the intuitionistic context, and whereas the second
list contains linear atoms. We also define an inductive predicate prog: atm ->

list oo -> list oo -> Prop that contains the encoding of inference rules of an
OL (such as operational semantics). This predicate is used by the clause of the seq
definition that encodes the backchaining rule. The formula (prog A IL L) reads
as follows: an atom A (the conclusion of an inference rule of the OL) is provable if
we can prove each member of the list of intuitionistic subgoals IL and of the linear
subgoals L (together representing the premises of an OL rule). The definition of seq
does not include the structural rules because they are admissible in our encoding of
the SL. The reader is referred to [8] for full versions of omitted definitions.

The implementation of the SL is significantly generalized from that in [7], allow-
ing a more complete validation in the form of more general metatheoretic properties
that can be applied to any OL. For example, we have proved the admissible struc-
tural properties and cut-elimination rules for both intuitionistic and linear contexts.

5

Mahmoud and Felty

We show only the statements of the cut-elimination rules. The first is:

Lemma seq cut aux: forall (a:atm) (b:oo) (IL L:list atm),

seq IL L b -> seq (remove eq dec a IL) [] (atom a) ->

seq (remove eq dec a IL) L b.

The theorem states that if we remove all instances of the hypothesis a from the list
of intuitionistic hypotheses IL, and a is found to be provable under the new list of
hypotheses, then eliminating a does not a↵ect the provability of b. Note that the
remove operator requires an equality operator on atoms as an argument. On the
other hand, the linear version of the cut elimination rule allows the removal of only
one instance of the linear resource a:

Lemma seq cut linear: forall (a:atm) (b:oo) (IL L L’:list atm),

seq IL L b -> seq IL L’ (atom a) ->

seq IL (L’ ++ remove one eq dec a L) b).

The following two examples illustrate the middle left box in Fig. 1.

Example 3. Continuing Example 1, the following is an example of a Proto-Quipper
typing rule:

�;�1 ` a :
A

�;�2 ` b :
B ⌦i

�;�1,�2 ` ha, bi : (A⌦B)

For the Proto-Quipper expressions a and b, whose types are A and B, respectively,
and linearly provable and do not share linear resources, their product ha, bi is of
type (A⌦B) (⌦ overloaded here). This rule is encoded as part of the prog clauses
dedicated to the Proto-Quipper language as follows:

| ttensorl: forall (a b:qexp) (A B: qtp),

prog (typeof (Prod a b) (tensor A B)) []

[Conj (atom (typeof a A)) (atom (typeof b B))]

Here, the type qtp encodes Proto-Quipper types (whose definition was omitted
from Example 1), typeof is an atm constructor that associates an expression with
its type, Conj encodes ⌦ as multiplicative conjunction of the SL, tensor encodes
⌦ as an OL type, and Prod encodes OL products inhabiting that type. This small
example justifies the use of linear logic.

Example 4. We choose to illustrate the Q language by considering well-formedness
of terms of the form �x.a and �!x.a from Example 2. Let � and � be contexts of
intuitionistic and linear term variables, respectively. The term �x.a (respectively
�!x.a) is well-formed in �;� if a is well-formed in �, x;� (respectively �;�, x). The
prog clauses for these lambda expressions are as follows:

| lambda1: forall (M:qexp -> qexp), abstr M ->

prog (is qexp (LAbs M)) [] [(All (fun x : qexp => lImp (is qexp x)

(atom (is qexp (M x)))))]

| lambda2: forall (M:qexp -> qexp), abstr M ->

prog (is qexp (IAbs M)) [] [(All (fun x : qexp => Imp (is qexp x)

(atom (is qexp (M x)))))]

Here, is qexp is one of the constructors of atm and All, lImp, and Imp are con-

6

Mahmoud and Felty

structors of oo encoding 8, (and) of the SL. Note the di↵erence between the
two rules: linear implication is used to define the linear lambda abstraction (which
emphasis that the function body contains one copy of x), whereas intuitionistic
implication is used to define intuitionistic lambda abstraction that allows multiple
copies of x or even zero occurrences.

Now, we conclude our formalization by showing an example meta-theorem,
namely subject reduction. The following theorem will prove the soundness of the
Proto-Quipper language based on the definitions provided earlier:

Theorem subject reduction:forall IL LL C C’ a a’,

seq IL [] (atom (reduct C a C’ a’)) ->

seq IL LL (atom (typeof a A)) ->

seq IL LL (atom (typeof a’ A)).

The above theorem states that if an expression aproduced by a quantum circuite C
reduces to an expression a’ produced by a quantum circuite C’, then the reduced
expression maintains the same type as the original expression. For an untyped
programming language, the above theorem will be slightly di↵erent, where typeof

atom will be replaced by is qexp.

4 Conclusion

We have proposed a meta-level analysis framework for functional QPLs implemented
using the Hybrid system with a linear specification logic. The framework provides
a standard way to tackle common components and concepts of QPLs, e.g., opera-
tional semantics and type safety. Formalization examples of the Proto-Quipper and
Q languages have been presented to show the practical potential of the proposed
system. We plan a more complete formalization of these languages in addition to
others, e.g., [4] and [14].

References

[1] Battell, C. and A. Felty, The logic of hereditary harrop formulas as a specification logic for hybrid, in:
Workshop on Logical Frameworks and Meta-Languages: Theory and Practice (2016), pp. 3:1–3:10.

[2] Brassard, G., C. Crepeau, R. Jozsa and D. Langlois, A quantum bit commitment scheme provably
unbreakable by both parties, in: IEEE Annual Symposium on Foundations of Computer Science, 1993,
pp. 362–371.

[3] Chaudhuri, K., L. Lima and G. Reis, Formalized meta-theory of sequent calculi for substructural logics,
in: Workshop on Logical and Semantic Frameworks with Applications, ENTCS 332 (2017), pp. 57 –
73.

[4] Dı́az-Caro, A. and G. Dowek, Simply typed lambda-calculus modulo type isomorphisms, CoRR
arXiv/1501.06125 (2014).

[5] Felty, A. P. and A. Momigliano, Hybrid: A definitional two-level approach to reasoning with higher-order
abstract syntax, Journal of Automated Reasoning 48 (2012), pp. 43–105.

[6] Knill, E., Conventions for quantum pseudocode, Technical Report LAUR-96-2724, Los Alamos National
Laboratory (1996), https://www.osti.gov/scitech/servlets/purl/366453, accessed 2017-06-19.

[7] Mahmoud, M. Y. and A. P. Felty, Formalization of metatheory of the Quipper quantum
programming language in a linear logic (2017), http://www.site.uottawa.ca/~afelty/dist/
HybridProtoQuipper17.pdf.

7

Mahmoud and Felty

[8] Mahmoud, M. Y. and A. P. Felty, Quantum programming language Coq scripts (2017), https:
//bitbucket.org/snippets/myousri/Gj7qX.

[9] Olivier Laurent, YALLA : an LL library for Coq, https://perso.ens-lyon.fr/olivier.laurent/
yalla/ (2017).

[10] Ömer, B., “A Procedural Formalism for Quantum Computing,” Master’s thesis, Technical University
of Vienna (1998).

[11] Ross, N. J., “Algebraic and Logical Methods in Quantum Computation,” Ph.D. thesis, Dalhousie
University (2015), CoRR arXiv:1510.02198 [quant-ph].

[12] Sanders, J. W. and P. Zuliani, Quantum programming, in: Mathematics of Program Construction,
LNCS (2000), pp. 80–99.

[13] Selinger, P. and B. Valiron, A lambda calculus for quantum computation with classial control,
Mathematical Structures in Computer Science 16 (2006), pp. 527–552.

[14] Vizzotto, J. K., B. Calegaro and E. K. Piveta, A double e↵ect �-calculus for quantum computation, in:
Brazilian Symposium on Programming Languages, LNCS (2013), pp. 61–74.

[15] Zorzi, M., On quantum lambda calculi: a foundational perspective, Mathematical Structures in
Computer Science 26 (2016), pp. 1107–1195.

8

Mechanizing Linear Logic in Coq

Bruno Xavier and Carlos Olarte
Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil

Giselle Reis1

Carnegie Mellon University, Doha, Qatar

Vivek Nigam
Centro de Informática, Universidade Federal da Paraı́ba João Pessoa, Brazil, and Fortiss, Munich, Germany

Abstract

Linear logic has been used as a foundation (and inspiration) for the development of programming languages, logical frame-
works and models for concurrency. Linear logic’s cut-elimination and the completeness of focusing are two of its fundamen-
tal properties that have been exploited in such applications. Cut-elimination guarantees that linear logic is consistent and has
the so-called sub-formula property. Focusing is a discipline for proof search that was introduced to reduce the search space,
but has proved to have more value, as it allows one to specify the shapes of proofs available. This paper formalizes linear
logic in Coq and mechanizes the proof of cut-elimination and the completeness of focusing. Moreover, the implemented
logic is used to encode an object logic, such as in a linear logical framework, and prove adequacy.

Keywords: linear logic, focusing, Coq, Abella

1 Introduction

Linear Logic was proposed by Girard [12] more than 30 years ago, but it still inspires
computer scientists and proof theorists alike, being used as a foundation for programming
languages, models of concurrency [18,8,19] and logical frameworks [16]. Such develop-
ments rely on two fundamental properties of linear logic: cut-elimination [11] and the
completeness of focusing [1].

Cut-elimination states that any proof with instances of the cut-rule:

` �, A ` �, A?
` �,�

1 Giselle Reis was funded by grant NPRP 097-988-1-178 from the Qatar National Research Fund (a member of the Qatar
Foundation). The statements made herein are solely the responsibility of the authors.

Preprint submitted to Electronic Notes in Theoretical Computer Science 6 August 2017

can be transformed into a proof of the same formula without any instance of the cut-rule.
The two main consequences of this theorem are: (1) the system’s consistency, i.e., it is not
possible to prove both ` A and ` A?; and (2) all proofs satisfy the sub-formula property,
i.e., a proof of a formula A, contains only sub-formulas of A. Focusing is a proof search
discipline proposed by Andreoli [1] which constraints proofs by enforcing that rules shar-
ing some structural property, like invertibility, are grouped together. The completeness of
focusing states that if a formula has a proof, then it has a focused proof.

The combination of cut-elimination and focusing allows for the construction of power-
ful linear logical frameworks. By relying on these two properties, proof search is consider-
ably improved. Moreover, these properties can be used to engineer the types of proofs, thus
allowing the specification/encoding of a number of di↵erent proof systems (e.g., sequent
calculus, natural deduction and tableaux systems) for di↵erent logics [16,17].

This paper presents a formalization of first-order classical linear logic (LL) in Coq,
including proofs for cut-elimination and completeness of focusing. Up to the best of our
knowledge, this is the first formalization the meta-theory of first-order linear logic in Coq
(see Section 6). Our main contributions are listed below:
(1) Quantifiers: Most of the formalizations of cut-elimination in the literature deal with

propositional systems (see Section 6). The first-order quantifiers of LL are fundamental
for the adequacy results in Section 5. We use the technique of Parametric HOAS [4] (i.e.,
dependent types in Coq) to encode the LL quantifiers in the meta-logic. This alleviates the
burden of specifying substitution and freshness conditions. However, it comes at a price,
as substitution lemmas and structural preservation under substitutions need to be assumed
as axioms (see details in Section 2).
(2) Focusing completeness: While cut-elimination theorems for a number of proof sys-
tems have been formalized, including propositional linear logic [3], this is, as far as we
know, the first formalization of first-order LL’s cut-elimination and LL’s focused proof sys-
tem completeness. The proof formalized is exactly the one presented by Andreoli [1]. It
involves a number of non-trivial proof transformations.
(3) Encoding proof systems: By relying on linear logic’s cut-elimination and focusing
property, it is possible to encode a number of proof systems [17,16]. Focusing is used to
achieve the highest level of adequacy (i.e., from rules to partial derivations). This is done by
engineering derivations available in the LL framework to match derivations of the encoded
proof system. We build a tactic that automatically handles the whole negative phase of the
proof, making proofs shorter and simpler for the specifier/programmer. The mechanized
proofs are similar to the paper proofs and quite direct. We demonstrate this by encoding
the system LJ for intuitionistic propositional logic into LL.
(4) Treatment of contexts: A main challenge in LL arises from the fact that contexts
are treated as multisets of formulas and not as sets (due to the lack of weakening and
contraction) . We show that the exchange rule is admissible in LL, i.e., if ` � is provable in
LL and �0 is a permutation of � then ` �0 is provable in LL. We use the library Morphisms of
Coq to easily substitute, in any proof, equivalent multisets. For doing that, we extended the
standard library for multisets in Coq with additional theorems. Moreover, we developed
tactics that handle (automatically) most of the proofs of multisets in our formalization.
(5) Induction measures: Although more relaxed measures for the height of derivations

2

can be used as induction measures (e.g., the axiom rule can have height n for any n), we
decided to follow carefully the induction measures used in the proof of cut-elimination and
the completeness of focusing in, e.g., [25] and [1]. Hence, our proofs reflect exactly the
procedures described in the literature.

Our formalization is available at https://github.com/meta-logic/coq-ll and the organiza-
tion of the paper follows closely the structure of the files. Section 2 deals with the syntax
of LL and the snippets of code are from SyntaxLL.v. Section 3 deals with di↵erent sequent
calculi for LL and a focused system for it (SequentCalculi.v). Section 4 presents several
results about LL: structural properties (StructuralRules.v), cut-elimination (Cut_Elim.v) and
completeness of focusing (Completeness.v). Section 5 shows the application of our formal-
ization to prove correct the encoding of LJ into LL (LJLL.v). Section 6 discusses related and
future work. We present here some of the most important definitions and key cases in the
proofs of the theorems. It is important to note that, for the sake of presentation, we omit
some cases (e.g., in inductive definitions) and we also change marginally the notation to
improve readability. Also, in theorems’ statements, all the variables are implicitly univer-
sally quantified. The reader may always consult the complete definitions and proofs in the
source files.

2 Linear Logic Syntax

Linear logic (LL) [12] is a resource conscious logic, in the sense that formulas are con-
sumed when used during proofs, unless they are marked with the exponential ? (whose
dual is !), in which case, they behave classically. LL connectives include the additive con-
junction & and disjunction � and their multiplicative versions ⌦ and O, together with their
units and the first-order quantifiers:

literal

multiplicative additive

quantified

exponential

A, B, . . . ::= a | A ⌦ B | 1 | A � B | 0 | 9x.A | !A

| a? | AOB | ? | ANB | > | 8x.A | ?A
(1)

The main issue when formalizing first-order logics in proof assistants is how to en-
code quantifiers. At first glance, one might consider the following naive signature for the
constructors fx and ex of universally and existentially quantified formulas, respectively:
| fx : (var! formula)! formula | ex : (var! formula)! formula

In order to define substitutions of variables for terms on such formulas, it is necessary to
define a term type as a union of, e.g., vars and functions; and also to implement substitution
from scratch. This means dealing with variable capture and equality of terms.

It is possible to avoid this unnecessary bureaucracy if substitution is handled by the
meta-level �-reduction. This means that a quantified formula Qx.F (Q 2 {8,9}) is repre-
sented as Q(�x.F), where � is a meta-level binder. In this case, we have:
| fx : (term! formula)! formula | ex : (term! formula)! formula

This approach is called higher-order abstract syntax (HOAS) or �-tree syntax [21,15].
In a functional framework, the type (term! formula) ranges over all functions of this type.
This is not desirable as it allows functions, called exotic terms [6], to pattern match on the

3

term and return a structurally (or logically) di↵erent formula for each case. Note that, in
a relational framework, this is not a problem, since all definitions must have the type of
propositions on the meta-level (di↵erent from the type of formulas of the object logic).

A solution for this problem is either to require that term is an uninhabited type or to
quantifying over all types as below:
| fx : forall T, (T ! formula)! formula | ex : forall T, (T ! formula)! formula

However, in both specifications, it is impossible to write a function that computes the
size of a formula (a good description of these problems can be found at http://adam.chlipala.
net/cpdt/html/Hoas.html). A solution proposed in [4] consists of parametrizing the type T for
quantified variables not in quantifiers’ constructors, but outside the whole specification.
This approach is called parametric HOAS. Using this technique, linear logic’s syntax is
formalized as follows.
Section Sec_lExp.
Variable T: Type. (* Parameter for building variables *)
Inductive term := (* Terms *)
| var (t: T) | cte (e: A) (* variables and constants *)
| fc1 (n: nat) (t: term) | fc2 (n: nat) (t1 t2: term). (* family of functions of 1/2 argument *)
Inductive aprop := (* Atomic propositions *)
| a0: nat! aprop (* 0-ary predicates *)
| a1: nat! term! aprop | a2: nat! term! term! aprop. (* family of 1/2-ary predicates *)
Inductive lexp := (* Formulas *)
| atom (a : aprop)) | perp (a: aprop) (* positive/negated atoms *)
| top | bot | zero | one (* units *)
| tensor (F G: lexp) | par (F G: lexp) (* multiplicative *)
| plus (F G: lexp) | witH (F G: lexp) (* additive *)
| bang (F: lexp) | quest (F: lexp) (* exponentials *)
| ex (f: T ! lexp) | fx (f: T ! lexp). (* quantifiers *)

End Sec_lExp.

The type A of constant terms is a global parameter. The signature of first-order terms
includes a family of functions fc1 and fc2 of one and two arguments respectively. In each
case, the first parameter (nat) is the identifier, i.e., the name of the function. Atomic propo-
sitions can be 0-ary (a0), unary (a1) or binary (a2) predicates. As in the case of functions, a
natural number acts as the identifier. The rest of the code should be self-explanatory. We
note that more general constructors for functions and predicate using a list (of arbitrary
length) of parameters could have been defined. However, the current signature is general
enough for our encodings and it greatly simplifies the notation.

All types defined in Section Sec_lExp are parametrized by the type T. Therefore, the type
of top, for example, is not lexp, but forall T: Type, lexp T. Hence, for any type T, the expression
top T is of type lexp T (e.g., top nat: lexp nat). Clearly, the definition of linear logic formulas
must be independent of T. In particular, it should not allow pattern matching on terms of
type T. Therefore, the type Lexp of linear logic formulas is defined over all types T (i.e., it is
a dependent type). The same holds for atoms and terms:
Definition Term := forall T: Type, term T. (* type for terms *)
Definition AProp := forall T: Type, aprop T. (* type for atomic propositions *)
Definition Lexp := forall T: Type, lexp T. (* Type for formulas *)

Note that top nat is not of type Lexp and connectives must be functions on T, e.g.,
Definition Top: Lexp := fun T) top. (* formula >*)
Definition Atom (P: AProp): Lexp := fun T) atom (P T). (* building atomic propositions *)
Definition Tensor (F G: Lexp): Lexp := fun T) tensor (F T) (G T). (* formula F ⌦G *)

4

Since T is never destructed, all its occurrences in the above code can be replaced by “_”
(meaning “irrelevant”). This means that an arbitrary type T is passed as a parameter, and it
does not interfere with the structure of formulas.

Some of the forthcoming proofs proceed by structural induction on a LL formula F: Lexp.
However, since Lexp is a (polymorphic) function, not an inductive type, Coq’s usual destruct,
induction or inversion tactics do not work. Following [4], the solution is to define inductively
the notion of closed formulas as follows:
Inductive ClosedT: Term! Prop :=
| cl_cte: forall C, ClosedT (Cte C)
| cl_fc1: forall n t1, ClosedT t1! ClosedT (FC1 n t1)
| cl_fc2: forall n t1 t2, ClosedT t1! ClosedT t2! ClosedT (FC2 n t1 t2).

Inductive ClosedA : AProp! Prop :=
| cl_a0: forall n, ClosedA (A0 n)
| cl_a1: forall n t, ClosedT t! ClosedA (fun _) a1 n (t _)).
| cl_a2: forall n t t’, ClosedT t! ClosedT t’! ClosedA (fun _) a2 n (t _) (t’ _)).

Inductive Closed : Lexp! Prop :=
| cl_atom: forall A, ClosedA A! Closed (Atom A)
| cl_perp: forall A, ClosedA A! Closed (Perp A)
| cl_one: Closed One
| cl_tensor: forall F G, Closed F! Closed G! Closed (Tensor F G)
| cl_fx: forall FX, Closed (Fx FX)
[...]

Such definitions rule out the occurrences of the open term var x in the type Term and,
consequently, in atomic propositions and formulas. Now we need the axioms that only
closed structures can be built.
Axiom ax_closedT: forall X: Term, ClosedT X.
Axiom ax_closedA: forall A: AProp, ClosedA A.
Axiom ax_closed : forall F: Lexp, Closed F.

The statements above cannot be proved in Coq, mainly because it is not possible to in-
duct on function types (such as Term). This would require, e.g., a meta-model of the Calculus
of Inductive Constructions [2] itself inside Coq. Let us give some intuition of why those
axioms are consistent with the theory of Coq. This will also clarify the closeness condition
we impose on Lexp. If 1 is the identifier for the predicate P and c is a constant of type A, the
atomic proposition P(c) can be defined as Definition Pc: Lexp := fun T: Type) atom (a1 1 (cte c)).

However, the same exercise does not work for P(x) when x is a free variable. If we were to
write Definition Px: Lexp := fun T: Type) atom (a1 1 (var ??)). , then “??” must be an inhabitant of T.
Since we do not know anything about T, we cannot name an element of it and Px will never
type check. Hence, both terms and formulas are necessarily closed (without free variable).

Another consequence of the functional representation of terms is that we require the
axiom of Functional Extensionality of the standard library of Coq to check whether two
terms/formulas are the same:
Axiom functional_extensionality_dep : forall {A} {B : A! Type},
forall (f g : forall x : A, B x), (forall x, f x = g x) ! f = g.

Roughly, given two function f and g, we conclude f = g whenever f (x) = g(x) for all x.
Substitutions. According to the definition of quantifiers, substitutions should be performed
on formulas of type T ! lexp, where T is a parameter. Following the same idea as before (and
as in [4]), we define a type Subs for such formulas as a (closed) dependent type:

5

Definition Subs := forall T: Type, T! lexp T. By quantifying over all Ts, we prevent functions that
destruct the term and change the structure of the formula. Now we need to define a wrapper
for substitutions. This substitution function will take as parameters S: Subs and X: Term, and
return a Lexp. The first step is to apply Coq’s �-reduction to S, the type of X (instantiating
the forall) and X (first argument). The result of this reduction is of type lexp (term T), which
is di↵erent from Lexp, defined as forall T: lexp T. A lexp T is constructed by the function
flatten: lexp (term T)! lexp T, which is defined in a section parametrized by T.
Definition Subst (S: Subs) (X: Term) : Lexp := fun T: Type) flatten (S (term T) (X T)).

As an example, the steps below apply �x.>⌦Q(f (x), c), to the constant d. The resulting
inhabitant of Lexp is commented out.
Definition S: Subs := fun (T: Type) (x: T)) tensor top (atom (a2 1 (fc1 1 (var x)) (cte c))).
Definition t1: Term := fun T) (cte d).
Eval compute in Subst S t1. (* fun T:Type) tensor one (atom (a2 4 (fc1 1 (cte d)) (cte c))) *)

Formula complexity. Even if it is now possible to reason on the structure of the formula
via the Closed definition, some of our proofs proceed by induction on the weight of a for-
mula. Our definition follows the standard one (i.e., W(>) = 0,W(F⌦G) = 1+W(F)+W(G),
etc). It should be the case that W(F[t/x]) = W(F[t0/x]) for any two terms t and t0. This
is true since substitutions cannot perform “case analysis” on the term t to return a di↵erent
formula. This simple fact requires extra work in Coq. First, we define when two formulas
are equivalent modulo renaming of bound variables (some cases are omitted):
Inductive xVariantT: term T! term T’! Prop :=
| xvt_var: forall x y, xVariantT (var x) (var y)
| xvt_cte: forall c, xVariantT (cte c) (cte c)
[...]
Inductive xVariantA: aprop T! aprop T’! Prop :=
| xva_eq: forall n, xVariantA (a0 n) (a0 n)
| xva_a1: forall n t t’, xVariantT t t’! xVariantA (a1 n t) (a1 n t’)
[...]
Inductive EqualUptoAtoms: lexp T! lexp T’! Prop :=
| eq_atom: forall A A’, xVariantA A A’! EqualUptoAtoms (atom A) (atom A’)
| eq_ex: forall FX FX’, (forall t t’, EqualUptoAtoms (FX t) (FX’ t’)) ! EqualUptoAtoms (ex (FX)) (ex (FX’))
[...]

For similar arguments as the ones given above for closeness, we need to add as axioms
that inhabitants of Subs and Lexp cannot make choices based on its arguments:
Axiom ax_subs_uptoAtoms: forall (T T’: Type) (t: T) (t’: T’) (FX: Subs), EqualUptoAtoms (FX T t) (FX T’ t’).
Axiom ax_lexp_uptoAtoms: forall (T T’: Type) (F: Lexp), EqualUptoAtoms (F T) (F T’).

The needed results for the weight function (defined as Exp_weight) can thus be proved:
Theorem subs_weight: forall (FX: Subs) x y, Exp_weight(Subst FX x) = Exp_weight(Subst FX y).

We also formalized propositional linear logic, including all the theorems in this sec-
tion as well as those in Sections 3 and 4 (see https://github.com/meta-logic/coq-ll). In the
propositional case, the type of formulas is a standard inductive type and there is no need
for parametric (polymorphic) definitions. Hence, none of the axioms above were needed.
In the first-order case, removing those axioms will amount to, e.g., formalize in a finer
level the binders and substitutions. This is definitely not an easy task (see e.g., [9,10])
and we would not get for free all the benefits inherited from the PHOAS approach (e.g.,
substitutions are, by definition, capture avoiding).

6

` a?, a
I

` �1, A ` �2, B
` �1,�2, A ⌦ B

⌦ ` 1 1
` �, A, B
` �, AOB

O ` �
` �,? ?

` �, A[x/e]
` �,8x.F 8

` �, A[x/t]
` �,9x.F 8d

` �, A ` �, B
` �, A & B & ` �,> >

` �, A
` �, A � B

�1
` �, B
` �, A � B

�2
` ?A1, . . . , ?An, A
` ?A1, . . . , ?An, ! A !

` �, A
` �, ?A ? ` �

` �, ?A W
` �, ?A, ?A
` �, ?A C

Fig. 1. Linear logic introduction rules: e is fresh, i.e., does not appear in �.

3 Sequent Calculi

The proof system for one-sided (classical) first-order linear logic is depicted in Figure 1.
A sequent has the form ` � where � is a multiset of formulas (i.e., exchange is implicit).
While this system is the one normally used in the literature, LL’s focused proof system is
equipped with some more structure. As shown by Andreoli [1], it is possible to incorporate
contraction (C) and weakening (W) into the introduction rules. The key observation is that
formulas of the form ?F can be contracted and weakened. This means that such formulas
can be treated as in classical logic, while the remaining formulas are treated linearly. This
is reflected into the syntax in the so called dyadic sequents which have two contexts:

` ⇥, F : �
` ⇥ : �, ?F ?

` ⇥, F : �, F
` ⇥, F : �

copy
` ⇥ : a?, a

I
` ⇥ : �1, A ` ⇥ : �2, B
` ⇥ : �1,�2, A ⌦ B

⌦ ` ⇥ : �, A ` ⇥ : �, B
` ⇥ : �, A & B &

Here ⇥ is a set of formulas and � a multiset of formulas. The sequent ` ⇥ : � is interpreted
as the linear logic sequent ` ?⇥,� where ?⇥ = {?A | A 2 ⇥}. It is then possible to define a
proof system for LL without explicit weakening (implicit in rule I above) and contraction
(implicit in e.g., copy and ⌦ above). Notice that only the linear context � is split among the
premises in the ⌦ rule. The complete proof system can be found in [1].

Rules of the dyadic system are specified as inductively defined predicates. The follow-
ing code is an excerpt of the definition of the dyadic system (called sig2 in our files):
Inductive sig2: list Lexp! list Lexp! Prop :=
| sig2_init : forall B L A, L =mul= (A +) :: [A �] ! ` B ; L
| sig2_bang: forall B F L , L =mul= [! F] ! ` B ; [F] ! ` B ; L
| sig2_ex : forall B L FX M t, L =mul= E{FX} :: M ! ` B ; (Subst FX t) :: M ! ` B ; L
| sig2_fx : forall B L FX M, L =mul= (F{FX}) :: M ! (forall x, ` B ; [Subst FX x] ++ M) ! ` B ; L
[...]

Given an atomic proposition A:Aprop, A+ and A� stand, respectively, for Atom(A) (A) and Perp(A)
(A?). Given a substitution FX:Subs, the LL quantifiers are represented as E{FX} and F{FX}.
The rule for the universal quantifier relies on Coq’s (dependent type constructor) forall that
takes care of generating a fresh variable. Finally, ++ stands for concatenation of lists.

Given two multisets of formulas M and N, M=mul=N denotes that M is multiset equivalent to
N. Coq’s library Coq.Sets.Multiset defines multisets as bags (of type A ! nat), thus specifying
the number of occurrences for each element of a given type A. Reasoning about such bags
is hard and automation becomes trickier. Using lists as representation of multisets seems
to be a better (and cleaner) choice. In fact, the library CoLoR (http://color.inria.fr/) fol-
lows that direction. CoLoR is quite general and formalizes, among several other theorems,
properties about data structures such as relations, finite sets, vectors, etc. CoLoR trans-
forms the lists M and N to Coq.Sets.Multiset and uses the multiplicity definition of Coq in
order to define multiset equivalence. Our Multisets module does not use this transforma-

7

tion. Instead, it uses directly Coq.Lists that features mechanisms to count the number of
occurrences of a given element. We also added some useful theorems for our formalization
and implemented automatic techniques (e.g., solve_permutation) that discharge most of the
proofs about multisets we needed in our developments.
Inductive Measures. In our proofs, we usually require measures for the height of the
derivation as well as for the number (and complexity) of the cuts used. For this reason,
we also specified other variants of the sequent rules where such measures are explicit. For
instance, the proof of cut-elimination was performed on the following system:
Inductive sig3: nat! nat! list lexp! list lexp! Prop :=
| sig3_init : forall (B L: list lexp) A, L =mul= (A +) :: [A �] ! 0 ` 0 ; B ; L
| sig3_CUT : forall (B L: list lexp) n c w h, sig3_cut_general w h n c B L! S n ` S c ; B ; L
[...]
with sig3_cut_general : nat! nat! nat! nat! list lexp! list lexp! Prop :=
| sig3_cut : forall ... L =mul= (M ++ N) ! m ` c1;B ; F :: M ! n ` c2 ; B ; F :: N ! sig3_cut_general ...
| sig3_ccut : forall ... L =mul= (M ++ N) ! m ` c1;B ; (! F) :: M ! n ` c2 ; F�:: B ; N ! sig3_cut_general ...

Note that there are two cut-rules: Cut (sig3_cut) and Cut! (sig3_ccut). The second rule
is needed in the proof of cut-elimination as shown in Section 4.1. We later show that the
system with only the Cut rule (sig2) is equivalent to sig3. Sequents in sig3 take the form
n ` c; B; L where n is the height of the derivation, c the number of times the cut-rule was
used and B and L the classical and linear contexts respectively. Definition sig3_cut_general
makes also explicit the following measures : w (the complexity of the cut formula) and
h = m + n (the cut-height, including the height of the two premises of the cut-rule). Such
measures will be useful in Section 4.1.

3.1 Focused System

Focusing was first proposed by Andreoli [1] as a discipline on proofs in order to reduce
non-determinism. Proofs are organized in two alternating phases: the negative phase con-
tains only invertible rules, and the positive phase contains only non-invertible rules. The
connectives O,?,&,>, ?,8 have invertible introduction rules and are thus classified as neg-
ative. The remaining connectives ⌦, 1,�, !,9 are positive. Formulas inherit their polarity
according to their main connective, e.g., A ⌦ B is positive and AOB is negative.

In LL’s focused proof system LLF (also called triadic system), there are two types of
sequents where ⇥ is a set of formulas, � a multiset of formulas, and L a list of formulas:

• ` ⇥ : � * L belongs to the negative phase. During this phase, all negative formulas in L
are introduced and all positive formulas and atoms are moved to �.

• ` ⇥ : � + A belongs to the positive phase. During this phase, all positive connectives at
the root of A are introduced.

Let us present some rules (the complete system is depicted in the Appendix):

` ⇥ : � * A, L ` ⇥ : � * B, L
` ⇥ : � * A & B, L

` ⇥ : �1 + A ` ⇥ : �2 + B
` ⇥ : �1,�2 + A ⌦ B

` ⇥ : � + P
` ⇥ : �, P * D1

` ⇥, P : � + P
` ⇥, P : � * D2

` ⇥ : � * N
` ⇥ : � + N R

Notice that focusing (+) persists on the premises of the ⌦ rule. The negative phase ends
when the list of formulas L is empty. Then, the decision rules D1 (linear) and D2 (classical)
are used to start a new positive phase. Finally, the release rule switches to a negative phase

8

when the current focused formula is negative. This restriction on proofs has two main
applications: it considerably reduces proof search space and it allows specifiers to engineer
proofs as we illustrate in Section 5.

The rules of the focused system (TriSystem) were formalized as the previous ones. We
used `B ; M ; UP L to denote the negative phase and `B ; M ; DW F for a positive phase focused
on F. Similar to the (unfocus) sequent systems sig2, we also defined for the triadic system
a version with explicit height of derivation (TriSystemh) that we later show to be equivalent.

An interesting feature of TriSysem is that we can define automatic tactics to handle the
negative phase. For instance the formula p�Oq�O?O(?p+)O(?q+) is proved as follows:
Example sequent: ` [] ; [] ; UP([(p� & q�) O ? O ?p+ O ?q+]).
Proof with unfold p;unfold q;InvTac.
NegPhase. (* Negative phase *)
eapply tri_dec2 with (F:= p+) ... (* apply the decision rule on the classical context *)
eapply tri_dec2 with (F:= q+) ...
Qed.

We first decompose all the negative connectives and store the atoms (NegPhase). Then, we
have to prove two sequents (due to the & rule). For proving those sequents, we only need
to decide to focus on the formulas p+ and q+ respectively. The “...” notation in Coq applies
the tactic InvTac that solves all the needed intermediary results (e.g., checking the polarities
of the atoms and applying the initial rules when needed).

3.2 Structural Properties

Using strong induction on the height of the derivation, we show several structural properties
for the above systems. For instance, we proved that equivalent multisets prove the same
formulas (preserving the height of the derivation):
Theorem sig2h_exchange: B1 =mul= B2! L1 =mul= L2! n ` B1; L1! n ` B2; L2.

Moreover, using the library Morphisms, we are able to easily substitute equivalent multisets
during proofs (using the tactic rewrite). Moreover, we proved height preserved weakening
and contraction for the classical context:
Theorem weakening_sig2h: n ` B; L! n ` B ++ D; L.
Theorem contraction_sig2h: n ` F :: F :: B; L ! n ` F :: B; L.

Similar properties were proved for the triadic system. The only interesting case is
exchange for the focused context (needed in the proof of completeness):
Theorem EquivUpArrow : n ` B ; M ; UP L ! L =mul= L’! exists m, m ` B ; M ; UP L’.

In this case, the height of the derivation is not preserved since the last context is a
list and not a multiset. The proof of such theorem required some lemmata showing the
invertibility of the negative connectives. In particular, in a sequent `B ; M ; UP L + + [a] + + L’,
if a is a negative connective, then, it can be applied any time during the proof. Those results
correspond to the following theorems (all the variables are universally quantified):
Theorem EquivAuxTop : ` B ; M ; UP (L ++ [>] ++ L’).
Theorem EquivAuxBot : ` B ; M ; UP (L ++ L’) ! ` B ; M ; UP (L ++ [?] ++ L’).
Theorem EquivAuxWith : ` B;M ;UP (L++[F]++ L’)! ` B ;M ; UP (L++[G] ++ L’) ! ` B; M ; UP (L ++ [F&G] ++ L’).
Theorem EquivAuxPar : n ` B ; M ; UP (L ++ [F ; G] ++ L’) ! ` B ; M ; UP (L ++ [F & G] ++ L’).
Theorem EquivAuxSync : ⇠ Asynchronous F! ` B ; M ++ [F] ; UP (L ++ L’) ! ` B ; M ; UP (L ++ [F] ++ L’).
Theorem EquivAuxForAll : (forall x, ` B ; M; UP (L++[Subst FX x]++ L’)) ! ` B ; M; UP (L ++ [F{FX}] ++ L’).

9

Theorem EquivAuxQuest : n ` B ++ [F] ; M ; UP (L ++ L’) ! ` B ; M ; UP (L ++ [? F] ++ L’).

The proofs of these lemmas proceed by induction on the sum of the complexity of the
formulas in L (i.e., summing up the complexities of the formulas in L). The Asynchronous F
predicate asserts that F is a negative formula.

4 Meta-Theory

This section presents the main results formalized in our system: cut-elimination (for the
dyadic system) and completeness of the focused system. Hence, as a corollary, we show the
equivalence of all these systems (dyadic, triadic, with/without cut rules and with/without
measures) and prove the consistency of LL. We show the key cases and relevant strategies
to complete the proofs of the main theorems. For that, we shall use the following notation.
We start listing, using “H” ids, the relevant hypotheses of the theorem and the current Goal
(using “G” ids). Then, we write the relevant steps (using Coq’s comments) to generate new
hypotheses or transform the current goal. For instance,
HI : forall m <=n, m ` B ; M ; UP L ! exists x, x ` B ; M ++ L (* inductive hypothesis *)
H1: n ` B ; M ; UP L
G: ` B ; M ++ L (* current goal *)
(* apply HI in H1 to conclude H2 *) H2 : exists x, x ` B ; M ++ L
(* using inversion in H2 we show H2’ *) H2’ : x ` B ; M ++ L
(* conclude G by using adequacy (with/without measures) in H2’ *)

In proofs involving the triadic system (Section 4.2), the focusing discipline determines
easily the next step/goal in the proof. In those cases, we do not use comments to explain the
proof but we use directly Coq’s tactics. Roughly, those tactics correspond to one application
of a logical rule of the triadic system (TriSystem). Finally, some of the proofs in Section 4.1
correspond to standard sequent transformations that we show in Appendix B.

4.1 Cut Elimination

The proof is structured as follows. The main theorem consists in showing that a proof with
one cut can be replaced with a proof with zero cuts. Recall that the measure of the number
of cuts is explicit (as c) in the system sig3:
Lemma cut_elimination_base: n ` 1 ; B ; L ! exists m, m ` 0 ; B ; L.

This lemma represents the case where we are eliminating the upper-most cut in a deriva-
tion tree. The proof, proceeds by double induction on the complexity of the cut-formula
(w) and the cut-height (h), i.e., the sum of the premises’ heights of the cut-rule. The proof
of this lemma requires several additional lemmas/cases:
(i) The base case corresponds to w = h = 0. The cut-formula is one of the units or an
atomic proposition. Moreover, since h = 0, both premises are either the initial rule or >.
We grouped those cases in the following theorem.
Theorem cut_aux: L =mul= M1 ++ M2! 0 ` 0 ; B ; F :: M1 ! 0 ` 0 ; B ; F� :: M2 ! exists m, m ` 0 ; B ; L.

(ii) In the cases where the formula is not principal, one has to permute the cut and reduce the
inductive measure h. For instance, the case where rule � is used in one of the cut-premises
is proved as follows (see item (i) in Appendix B):

10

H : n1 ` 0; B; a :: F :: T (* 0 cuts, height n1. "a" is the cut-formula *)
Hn1 : S n1 ` 0; B; a :: F � G :: T
Hn2 : n2 ` 0; B; a� :: M2 (* 0 cuts, height n2 *)
HI : forall h<= n1 + n2! inductive hypothesis on the cut�height
G: exists m : nat, m ` 0; B; F � G :: T ++ M2
(* apply cut on H and Hn2 to conclude Hc*) Hc: S(max n1 n2) ` 1 ; B; F :: T ++ M2
(* use HI to produce a cut-free proof Hc’ *) Hc’: x ` 0 ; B; F :: T ++ M2
(* using exists with t:= S x the new goal is G’ *) G’ : S x ` 0; B; F � G :: T++ M2
(* conclude G’ from Hc’ and the rule � *)

(iii) When the cut formula is principal in both premises, we perform (possible several) cuts
with simpler formulas. For instance, the case of ⌦ is (see item (ii) in App. B):
H1 : S (max n m) ` 0; B; F ⌦ G :: (M1 ++ M2) (* cut formula is F * G *)
H2 : S n0 ` 0; B; F� O G� :: D
H3 : m ` 0; B; F :: M1
H4 : n ` 0; B; G :: M2
H5 : n0 ` 0; B; G� :: F� :: D
HI : forall w<= w(F ⌦ G) ! inductive hypothesis on the weight
G: exists m0 : nat, m0 |� 0; B; M1 ++ M2 ++ D
(* apply cut on H4 and H5 to conclude H6 *) H6 : S(max n n0) ` 1 ; B; F� :: (M2 ++ D)
(* use HI on H6 to produce a cut-free proof H6’ *) H6’ : x ` 0 ; B; F� :: (M2 ++ D)
(* apply cut on H3 and H6 to conclude H7 *) H7 : S(max m x) ` 1 ; M1 + + M2 + + D
(* use HI on H7 to produce a cut-free proof H7’ *) H7’ : y ` 0 ; M1 + + M2 + + D
(* conclude G from H7’ *)

The case when ! is the cut-formula and principal requires and additional rule Cut !

` ⇥ : �, ! F ` ⇥, F? : �
` ⇥ : �,�

that we show to be admissible (Theorem sig2_iff_sig3 below). This rule is encoded in
the sig3 system (constructor sig3_ccut). We then transform an application of Cut into an
application of Cut !, reducing the cut-height (see item (iii) in Appendix B):
H1 : S n |� 0; B; [! F]
H2 : S n0 |� 0; B; ? F� :: L
H3 : n |� 0; B; [F]
H4 : n0 |� 0; F� :: B; L
HI : forall h <= S (n + n0) ! inductive hypothesis on cut�height
G: exists m0 : nat, m0 ` 0; B; L
(* apply ccut on H1 and H4 to conclude H5*) H5 : S(max (S n) n0) ` 1; B ; L
(* use HI to obtain the cut-free proof H5’ *) H5’ : x ` 0; B ; L
(* conclude G from H5’ *)

(iv) The cases for eliminating an application of Cut! are similar.
Using all the lemmas above, the proof of cut-elimination considers all the cases (in-

cluding the symmetric ones) generated by Coq. The final step is to show that a proof with
an arbitrary number of cuts can be transformed into a proof without cuts. This can be easily
done by induction on the number of cuts and using the previous results:
Theorem cut_elimination : forall B L n c, n |� c ; B ; L ! exists m, m |� 0 ; B ; L.

As a corollary, we can show the consistency of LL:
Theorem consistency : ⇠ sig3 n c [] [] ^ ⇠ sig3 n c [] [0] ^ ⇠ sig3 n c [] [?].

Now we can prove that the Cut! rule is admissible and hence, the systems with (sig3)
and without (sig2) this rule are equivalent:
Theorem sig2_iff_sig3: sig2 B; L$ sig3 B; L.

The most interesting (inductive) case in the proof considers the transformation of an appli-

11

cation of Cut! into an application of Cut (see item (iv) in Appendix B).

4.2 Completeness of Focusing

The following theorem shows that focused proofs can be mimicked by the dyadic system:
Theorem Soundness : LexpPos M! n |�F� B ; M ; A ! |�� B ; M ++ (Arrow2LL A).

where the predicate LexpPos states that all the formulas in the list/multiset M are all positive
and the function Arrow2LL simply transforms “* L” into L and “+ F“ into the list [F]. The
proof is easy by induction on the height of the derivation n: we just need to apply exactly
the same rule used in the focused proof.

The proof of the inverse theorem, i.e., completeness, is of course more involved. First,
we proved the invertibility theorems in Section 3.1 (for the negative connectives). Then we
proved that applications of positive rules can be switched:
Theorem InvCopy : |�F� B ++ [F] ; M ; UP (F :: L) ! LexpPos M! |�F� B ++ [F] ; M ; UP L .
Theorem InvEx : |�F� B ; M ; UP (Subst FX t :: L) ! LexpPos M! |�F� B ; M ++ [E{ FX}] ; UP L .
Theorem InvPlus : |�F� B ; M ; UP (F :: L) ! LexpPos M! |�F� B ; M ++ [F � G] ; UP L .
Theorem InvTensor : LexpPos (M ++ M’) ! |�F� B ; M ; UP (F :: L) ! |�F� B; M’; UP (G :: L’) !

|�F� B ; M ++ M’ ++ [F ⌦ G] ; UP (L ++ L’) .

In [1] Andreoli detailed the proof of the case for ⌦ (InvTensor). Let us explain the case
for �. First we define the following predicates:
Definition RUp (n:nat) := forall B L M F G, LexpPos M!

n |�F� B ; M; UP (L ++ [F]) ! |�F� B ; M ++ [F � G]; UP L.
Definition RDown (n:nat) := forall B M H F G, LexpPos M! PosOrNegAtom F!

n |�F� B ; M ++ [F] ; DW H ! |�F� B ; M ++ [F � G] ; DW H.
Definition RInd (n:nat) := RUp n ^ RDown (n �1).

The predicate RUp determines how � permutes with the negative connectives. We pro-
ceed by induction on n. In the inductive cases, we consider two cases, namely, when L is
empty or not. Let us explain the first case. We consider the last rule applied. The cases of
the negative connectives are easy, e.g., the case ? is as follows:
Hyp1: S n |�F� B; M1; UP [?]
G1: |�F� B; M1 ++ [? �G]; UP [] eapply tri_dec1 with (F:= ? �G) ...
G2: |�F� B; M1 ++ []; DW (? �G) eapply tri_plus1 ...
G3: |�F� B; M1 ++ []; DW ? eapply tri_rel ...
G4: |�F� B; M1 (2++·) []; UP? (* conclude by using AdequacyTri1 and Hyp1 *)

The last step (AdequacyTri1) uses the adequacy result relating the system with measures (se-
quent in Hyp1) and the current goal.

The interesting case is the store case, i.e., when the the formula F is an atom or a
positive formula. Then we have the following situation:
HDown : RDown (n �1)
Hyp1 : n |�F� B; M1 ++ [F]; UP []

Since the sequent in Hyp1 is provable, due to focusing, we know that it is provable by
using a decision rule. We then need to consider three cases, namely, focusing on either
F, on a formula in M1 or on a formula in B. Let us consider the second case. We have the
following situation (after some substitutions):
HDown : RDown (n’)
Hyp1’ : n’ |�F� B; M1’ ++ [F]; DW F’
HML : M1 =mul= F’ :: M1’

12

G1: |�F� B; (F’ :: M1’) ++ [F � G]; UP [] eapply tri_dec1 with (F:=F0) ...
G2: |�F� B; M1’ ++ [F � G]; DW F’

The proof of G2 ends by applying the inductive hypotheses HDown in Hyp1’.
The second predicate (RDown) allows us to permute two positive phases in the proof. We

proceed by induction on n and consider all the cases for H in DW H. Let us show the case
when H = 9x.H0. The main hypotheses and goal are:
HDown : RDown n’
H : n’ |�F� B; M ++ [F]; DW (Subst FX t)
G1 : |�F� B; M ++ [F � G]; DW (E{FX}) apply tri_ex with (t:=t) ...
G2: |�F� B; M ++ [F � G]; DW (Subst FX t)

The proof ends by applying the inductive hypothesis HDown in H. The other cases are
similar (see the case of ⌦ in the Appendix B.1).

5 Applications

In [16], LL was used as the logical framework for specifying a number of logical and com-
putational systems. The idea is to use two meta-level predicates b·c and d·e for identifying
objects that appear on the left or on the right side of the sequents in the object logic. Hence,
for instance, object-level sequents of the form B1, . . . , Bn ` C1, . . . ,Cm (where n,m � 0)
are specified as the multiset bB1c, . . . , bBnc, dC1e, . . . , dCme. Here, as an application of our
developments, we specify an encoding of intuitionistic propositional logic (LJ) into LL and
prove the adequacy of the encoding. The machinery we develop is general enough to mech-
anize the proof of other adequacy theorems for logical systems [16] and also for concurrent
computational systems [18,19].

We first specify the syntax of LJ in the usual way:
Inductive LForm :Set :=
| bot (* false *) | atom : nat! LForm (* atomic propositions *)
| conj : LForm! LForm! LForm (* conjunction *)
| disj : LForm! LForm! LForm (* disjunction *)
| impl : LForm! LForm! LForm. (* intuitionistic implication *)

and the logical rules:
Inductive sq : list LForm! nat! LForm! Prop :=
| init : forall (L L’ : list LForm) a, L =mul= atom a :: L’ ! L ; 0 |�P� atom a
| cR : forall L F G n m , L ; n |�P� F ! L ; m |�P� G ! L ; S (max n m) |�P� conj F G
| cL : forall L G G’ F L’ n, L =mul= (conj G G’) :: L’ ! G :: G’ :: L’ ; n |�P� F ! L ; S n |�P� F
[...]

We name the two meta-level predicates d·e and b·c as 1 and 3 respectively, and we also
name the (meta-level) functional symbols that represent each of the connectives in LJ:
Definition rg := 1. (* UP PREDICATE *) Definition lf := 3. (* DOWN predicate *)
Definition bt := 0. (* bottom *) Definition pr := 1. (* atoms / propositions *)
Definition cj := 2. (* conjunction *) Definition dj := 3. (* disjunction *)
Definition im := 4. (* implication *)

We note that even (resp. odd) predicates are assumed to be positive (resp. negative).
Hence, rg and l f are negative atoms and it is not possible to focus on them.

Now we are able to encode LJ’s logical rules as bipoles [16]. Roughly, a bipole is a
positive formula in which no positive connective can be in the scope of a negative one.

13

Focusing on such a formula will produce a single positive and a single negative phase. This
two-phase decomposition enables the adequate capturing of the application of an object-
level inference rule by the meta-level logic. For instance, LJ initial rule is encoded as the
following LL formula:
Definition INIT :Lexp := Ex (fun _ x) tensor

(tensor (perp (a1 rg (fc1 pr (var x)))) (perp (a1 lf (fc1 pr (var x))))) top).

If we decide to focus on INIT, then, the rule 9 requires to chose a value for x and the
focus continues on the formula (d(A1(pr(x)))?e⌦b(A1(pr(x)))?c)⌦>. Hence, the two atoms
d(A1(pr(x)))e and b(A1(pr(x)))c must be already in the context (since focusing cannot be
lost). The proof finishes by loosing the focusing on > and then, in the negative phase, by
using the rule >. In other words, in one change of polarity, we check that a given atom a is
on the right and on the left, thus finishing the proof.

The other rules follow a similar pattern. For instance, ^R is specified as:
Definition CRIGHT :Lexp := Ex (fun _ x) ex(fun y)

tensor (perp (a1 rg (fc2 cj (var x) (var y))))
(witH (atom (a1 rg (var x))) (atom (a1 rg (var y)))))).

Again, in a positive phase, 9 and ⌦ are applied and the atom dA1(c j(x, y))e is consumed.
Focusing is lost on & and we obtain two LL sequents. In each of them, the atoms dA1(x)e
and dA1(y)e are stored. What we observe is exactly the behavior of ^R.

Thanks to the automatic tactics developed, the proof of soundness and completeness are
relatively simple. Let us explain the main arguments. In the case of soundness, we have:
Definition encodeSequent (L: list PL.LForm) (F: PL.LForm) :=

|�F� Theory ; (encodeFR F) :: encodeList L ; UP [].
Theorem Soundness: |�P� n ; F! (encodeSequent L F).

where the function encodeFR (resp. encodeList) simply generate the needed d·e atoms
(resp. list of b·c atoms). Moreover, Theory is a list with the encoding of all the LJ rules.

We proceed by induction on n. Let us consider the case of conjunction right. It su�ces
to build the focused proof, starting by focusing on the rule CRIGHT:
HI: (* Inductive hypothesis x  max(n,m) *)
HF: L |�P� n; F
HG: L |�P� m; G
G1: |�F� Theory ; dc j(F,G)e :: encodeList L; UP [] eapply tri_dec2 with (F:= CRIGHT) ...
G2: |�F� Theory ; dc j(F,G)e :: encodeList L; DW CRIGHT eapply tri_ex with (t:= encodeTerm F).
G3: |�F� Theory ; dc j(F,G)e :: encodeList L; DW E{ ...} ... eapply tri_ex with (t:= encodeTerm G).
G4: |�F� Theory ; dc j(F,G)e :: encodeList L; DW AtR ⌦ (AtF & AtG) eapply tri_tensor ...
G5: |�F� Theory ; dc j(F,G)e :: encodeList L; DW AtF & AtG apply tri_rel ...
G6: |�F� Theory ; dc j(F,G)e :: encodeList L; UP AtF & AtG apply tri_with; apply tri_store ...
(* Branch F *) apply HI in HF ...
(* Branch G *) apply HI in HG ...

Recall that the “...” solves the easy cases (see Section 3.1). On the other side, completeness
is stated as follows:
Theorem Completeness : (encodeSequent L F)! exists n, L |�P� n ; F.

We proceed by induction on the height of the (LL) derivation. The interesting part
of this proof is that, thanks to focusing, we only need to use the inversion tactic on the
hypotheses until the goal is proved. For instance, in the inductive case (n > 0) the most
relevant hypothesis and goal are:

14

H: S n |�F� Theory; encodeFR F :: encodeList L; UP []
G: exists n : nat, L |�P� n; F

Since we have the proof in H, focusing tells us that that such proof must proceed by
deciding either to focus on a formula in the classical context (Theory) or in the linear context
(encodeFR F :: encodeList L). However, atoms in the linear context are negative and we cannot
focus on them. Therefore, the only alternative is to focus on one of the formulas in Theory.
This makes the proof rather simple. For instance, consider the case INIT:
H’ : n |�F� Theory; encodeFR F :: encodeList L; DW INIT

We continue applying inversion on H’ to “generate” the consequences of having the
proof H’. The main consequence, in this case, is
H’’ : exists L’ a, L =mul= (F :: L’) ^ F = PL.atom a

This means that F is necessarily an atom and such atom is in the list of (PL) formulas L.
Hence, the proof concludes easily by applying the initial rule of LJ.

6 Related and Future Work

Intuitionistic propositional linear logic was implemented in Coq [22] and Isabelle [14], but
the main goal of these works was to provide proof search, and thus no meta-theorems were
proved. Cut-elimination and invertibility lemmas were proved for a formalization of several
linear logic calculi in Abella [3]. Even though the paper presents only the propositional
part, the proofs for first-order and focused fragments were later completed. The first-order
implementation requires the use of the two-level logic approach, particular to this tool.

A generic method for formalizing sequent calculi in Isabelle/HOL is proposed in [5].
The meta-theorems are parametrized by the set of rules and for cut-elimination, weakening
must be admissible. The authors have applied the method to provability logics.

Completeness of focusing was proved for intuitionistic propositional logic in Twelf and
Agda [24]. The proof follows the technique developed in [20] where sequents are annotated
with terms and the problem is reduced to type-checking. Focusing follows as a corollary
of two other properties proved about the calculus. In their approach, context management
is handled in the meta-level, so much of the bureaucracy in handling multisets is avoided.
The method in [24] could be used to prove completeness of focusing of LL as well. A
possible candidate implementation is the one from [23, Chapter 6] on a modified version of
Twelf. Unfortunately this development was never carried out. Another approach for prov-
ing completeness of focusing, formalized in Coq, uses an algebraic implementation of the
calculus [13]. To use this solution, the calculus must have “dual” rules for all connectives
(harmony) and admissibility of contraction and weakening.

In the short term, we plan to use the machinery in Section 5 in order to mechanize the
proofs of adequacy of other formalisms into Linear Logic, e.g., Hybrid Linear Logic [7],
and Concurrent Constraint Process Calculi (CCP) [19]. In order to prove the adequacy of
CCP calculi featuring modalities, we have to specify also the so-called subexponentials [19]
(roughly, exponentials decorated with indexes). Finally, a more interesting outcome will
be formalizing the theorems in [16]. This should allow us to use the meta-theory of linear
logic to prove meta-theorems (e.g., cut-elimination) of other logics encoded into LL.

15

References

[1] J.-M. Andreoli. Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic and Computation, 1992.

[2] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development Coq’Art: The Calculus of Inductive
Constructions. Texts in Theoretical Computer Science, EATCS Series, 2004.

[3] K. Chaudhuri, L. Lima, and G. Reis. Formalized Meta-Theory of Sequent Calculi for Substructural Logics. In
Workshop on Logical and Semantic Frameworks, with Applications (LSFA-11), 2016.

[4] A. Chlipala. Parametric higher-order abstract syntax for mechanized semantics. In Proceeding of the 13th ACM
SIGPLAN international conference on Functional programming, ICFP, 2008.

[5] J. E. Dawson and R. Goré. Generic Methods for Formalising Sequent Calculi Applied to Provability Logic. In Logic
for Programming, Artificial Intelligence, and Reasoning - 17th International Conference, LPAR-17, 2010.

[6] J. Despeyroux, A. P. Felty, and A. Hirschowitz. Higher-Order Abstract Syntax in Coq. In Typed Lambda Calculi and
Applications, Second International Conference on Typed Lambda Calculi and Applications, TLCA, 1995.

[7] J. Despeyroux, C. Olarte, and E. Pimentel. Hybrid and Subexponential Linear Logics. To appear in Electronic Notes
in Theoretical Computer Science, 2017.

[8] H. DeYoung, L. Caires, F. Pfenning, and B. Toninho. Cut Reduction in Linear Logic as Asynchronous Session-Typed
Communication. In Computer Science Logic (CSL’12), 2012.

[9] A. P. Felty and A. Momigliano. Hybrid - A Definitional Two-Level Approach to Reasoning with Higher-Order Abstract
Syntax. Journal of Automated Reasoning, 2012.

[10] A. P. Felty, A. Momigliano, and B. Pientka. The Next 700 Challenge Problems for Reasoning with Higher-Order
Abstract Syntax Representations - Part 2 - A Survey. Journal of Automated Reasoning, 2015.

[11] G. Gentzen. Investigations into Logical Deductions. In The Collected Papers of Gerhard Gentzen, pages 68–131.
North-Holland, 1969.

[12] J.-Y. Girard. Linear logic. Theoretical Computer Science, 1987.

[13] S. Graham-Lengrand. Polarities & Focussing: a journey from Realisability to Automated Reasoning. Habilitation
thesis, Université Paris-Sud, 2014.

[14] S. Kalvala and V. D. Paiva. Mechanizing linear logic in Isabelle. In In 10th International Congress of Logic, Philosophy
and Methodology of Science, 1995.

[15] D. Miller and C. Palamidessi. Foundational Aspects of Syntax. ACM Computing Surveys, 1999.

[16] D. Miller and E. Pimentel. A formal framework for specifying sequent calculus proof systems. Theoretical Computer
Science, 2013.

[17] V. Nigam and D. Miller. A Framework for Proof Systems. Journal of Automated Reasoning, 2010.

[18] V. Nigam, C. Olarte, and E. Pimentel. A General Proof System for Modalities in Concurrent Constraint Programming.
In Concurrency Theory (CONCUR), 2013.

[19] C. Olarte, E. Pimentel, and V. Nigam. Subexponential concurrent constraint programming. Theoretical Computer
Science, 2015.

[20] F. Pfenning. Structural Cut Elimination. Information and Computation, 2000.

[21] F. Pfenning and C. Elliott. Higher-order Abstract Syntax. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 1988.

[22] J. Power and C. Webster. Working with linear logic in coq. In 12th International Conference on Theorem Proving in
Higher Order Logics, pages 1–16, 1999.

[23] J. Reed. A Hybrid Logical Framework. PhD thesis, Carnegie Mellon University, 2009.

[24] R. J. Simmons. Structural focalization. CoRR, abs/1109.6273, 2011.

[25] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University Press, 2000.

16

Introduction Rules

` ⇥ : � * L
` ⇥ : � * L,? [?]

` ⇥ : � * L, F,G
` ⇥ : � * L, FOG [O]

` ⇥, F : � * L
` ⇥ : � * L, ?F [?]

` ⇥ : � * L,> [>]
` ⇥ : � * L, F ` ⇥ : � * L,G

` ⇥ : � * L, F & G [&]
` ⇥ : � * L, F[c/x]
` ⇥ : � * L,8x F [8]

` ⇥ :+ 1 [1]
` ⇥ : � + F ` ⇥ : �0 + G
` ⇥ : �,�0 + F ⌦G

[⌦] ` ⇥ :* F
` ⇥ :+ ! F [!]

` ⇥ : � + F
` ⇥ : � + F �G [�l]

` ⇥ : � + G
` ⇥ : � + F �G [�r]

` ⇥ : � + F[t/x]
` ⇥ : � + 9x F [9]

Identity, Reaction, and Decide rules

` ⇥ : A?p + Ap
[I1] ` ⇥, A?p :+ Ap

[I2] ` ⇥ : �, S * L
` ⇥ : � * L, S [R *]

` ⇥ : � + P
` ⇥ : �, P * [D1]

` ⇥, P : � + P
` ⇥, P : � * [D2]

` ⇥ : � * N
` ⇥ : � + N [R +]

Fig. A.1. The focused proof system, LLF, for linear logic [1]. Here, L is a list of formulas, ⇥ is a multiset of formulas, � is a
multiset of literals and positive formulas, Ap is a positive literal, N is a negative formula, P is not a negative literal, and S is
a positive formula or a negated atom.

A Linear Logic Focused Proof System

The complete set of rules for the triadic (focused) system is in Figure A.1.

B Proof Transformations (Cut-Elimination Proof)

(i) Case � when the cut-formula is not principal:

⇡1
` [];�,G1, F

` [];�,G1 �G2, F
�1

⇡2
` �, F?

` [];�,G1 �G2,� cut

⇡1
` [];�,G1, F

⇡2
` [];�, F?

` [];�,G1,�
cut

` [];�,G1 �G2,�
�1

(ii) The cut-formula is principal (case ⌦):

⇡1
` [];�1, F

⇡2
` [];�2,G

` [];�1,�2, F ⌦G ⌦
⇡3

` [];�, F?,G?

` [];�, F?OG?
O

` [];�1,�2,�
cut

⇡
` [];�1, F

⇡2
` [];�2,G

⇡3
` [];�, F?,G?

` [];�2, F?,�
cut

` [];�1,�2,�
cut

17

(iii) The cut-formula is principal (case !):

⇡1
` []; !F

⇡2
` [, F?];�
` [];�, ?F? ?

` [];� cut

⇡1
` []; !F

⇡2copy
` [, F?];�

` [];� cut!

(iv) Equivalence between the system with CUT ! and the system with only the standard
cut-rule:

⇡1
` []; !F

⇡2
` [, F?];�

` [];� cut!

⇡1
` []; F
` []; !F

⇡2
` [, F?];�
` [];�, ?F? ?

` [];� cut

B.1 Proof of the case H = H1 ⌦ H2

The case H = H1 ⌦ H2 leads to the following:
H : M’ ++ N’ =mul= [F] ++ M
HF’ : n1 |�F� B; M’; DW H1
HG’ : n2 |�F� B; N’; DW H2
G: |�F� B; M ++ [F � G]; DW (H1 ⌦ H2)

We have to consider two cases: when F is in M0 and when F is in N0. Both cases are
proved in a similar way. Consider the case F 2 M:
HDown: RDown (S n1)
HMN: M’ =mul= [F] ++ M’’
HF’ : n1 |�F� B; M’; DW H1
HG’ : n2 |�F� B; N’; DW H2
���
G’: |�F� B; (M’ ++ N’) ++ [F � G]; DW (H1 ⌦ H2) eapply tri_tensor ...
(* Case H1 *) |�F� B; M’’ ++ [F � G]; DW H1 (* proved by using HDown in HG’*)
(* Case H2 *) |�F� B; N’; DW H2 (* proved from HG’ *)

18

Hierarchical hybrid logic

Alexandre Madeira

HASLab INESC TEC, U. Minho & CIDMA, U. Aveiro, Portugal

Renato Neves

HASLab INESC TEC, U. Minho

Manuel A. Martins

CIDMA, U. Aveiro, Portugal

Lúıs S. Barbosa

HASLab INESC TEC, U. Minho

Abstract

We introduce HHL, a hierarchical variant of hybrid logic. We study first order correspondence results and
prove a Hennessy-Milner like theorem relating (hierarchical) bisimulation and modal equivalence for HHL.
Combining hierarchical transition structures with the ability to refer to specific states at di↵erent levels, this
logic seems suitable to express and verify properties of hierarchical transition systems, a pervasive semantic
structure in Computer Science.

Keywords: Hybrid logic, Hierarchical systems.

1 Introduction

From D. Harel’s statecharts [Har87] to the mobile ambients [CG98] proposed by A.
Gordon and L. Cardelli, models of hierarchical systems are pervasive in Computer
Science. In practice, hierarchical, multi-level transitions often coexist with local
ones. The ability to represent both and reason uniformly about them is essential to
such models, for example in specific applications such as coordination protocols in
the context of distributed systems [BAPG03], or to handle software which operates
in di↵erent modes of execution and is able to commute between them. The global
transition structure defines how such systems evolve from a mode (or configuration)
to another [MFMB11].

This paper introduces a hierarchical variant of hybrid logic [Bla00,Bra10] that
adds to the modal description of hierarchical transition structures the ability to

Madeira, Neves, Martins and Barbosa

refer to specific states at any level of description. As discussed by the authors in
[MFMB11], hybrid logic, which allows one to refer to specific states in a system,
became the specification lingua franca for reconfigurable systems. The hierarchical
variant proposed here sets the ground for a uniform framework to express and verify
properties of any kind of hierarchical transition system.

The paper is organised as follows: after a section on preliminaries, Section 3
introduces hierarchical hybrid logic, HHL. The relevant first-order correspondences
are discussed in Section 4. Section 5 discusses bisimulation for this sort of systems
and proves a Hennessy-Milner like theorem relating, under the usual conditions of
image-finiteness, bisimulation and modal equivalence for HHL. Finally, Section 6
concludes and briefly discusses future work.

2 Hybrid logic

The qualifier hybrid [Bla00,Bra10] applies to extensions of modal languages with
symbols, called nominals, that explicitly refer to individual states in the underlying
Kripke frames. A hybrid signature is a pair (Prop,Nom), where Prop and Nom are
disjoint sets of symbols of propositional variables and nominals, respectively. The
set of hybrid formulas over (Prop,Nom) extends the corresponding modal language
with formulas i, which only hold at the state named by i, and @i⇢, which asserts
that formula ⇢ holds in the state named by i, for i ∈ Nom. Formally, the set of
formulas, denoted by FmHL(Prop,Nom), is defined by the grammar

⇢ ∶∶= p � i � @i⇢ � � ⇢ � ¬⇢ �⇢ ∧ ⇢,
for i ∈ Nom and p ∈ Prop.

Note that the remaining Boolean connectives and the box modality are intro-
duced as abbreviations. The set BFmHL(Prop,Nom) of basic formulas is defined
by

Prop ∪Nom ∪ { �⇢ ∶ ⇢ ∈ FmHL(Prop,Nom)}∪ {@i⇢ ∶ ⇢ ∈ FmHL(Prop,Nom), i ∈ Nom}
Models of HL for a signature (Prop,Nom) are Kripke structures with named states,
i.e., structuresM = (W,R,V) where W is a set of states, R ⊆W ×W is the accessibil-
ity relation, and V ∶ Prop ∪ Nom→ P(W) is a function that interprets propositions
and nominals, such that for any i ∈ Nom, V (i) is a singleton. The set of all models
over a signature (Prop,Nom) is denoted by ModHL(Prop,Nom).
The satisfaction relation between a model M = (W,R,V) in ModHL(Prop,Nom)
and a formula ⇢ ∈ FmHL(Prop,Nom) at state w ∈ W , is recursively defined as
follows:

● M,w �HL ⇢ i↵ w ∈ V (⇢), ⇢ ∈ Nom ∪Prop;● M,w �HL @i' i↵ M,V (i) �HL ';● M,w �HL �' i↵ there is a v ∈W such that (w, v) ∈ R and M,v �HL ';● M,w �HL ¬' i↵ it is false that M,w �HL ' (in symbols, M,w ��HL ');
2

Madeira, Neves, Martins and Barbosa

● M,w �HL ' ∧'′ i↵ M,w �HL ' and M,w �HL '′.
As usual, we write M �HL ⇢ when, for any w ∈W , M,w �HL ⇢, and �HL ⇢ when

M �HL ⇢ for all M ∈ModHL(Prop,Nom).
Applications often justify the introduction of a distinguished state in the un-

derlying Kripke structure, regarded as the initial point of evaluation. As discussed
in the sequel, such is the case of hierarchical transition systems representing soft-
ware configurations: each configuration ‘starts’ at a specific entry point, or initial
state. Models for such pointed versions of HL are pairs ((W,R,V), s) where s ∈W .
Accordingly, the satisfaction relation is defined by

((W,R,V), s) � ⇢ i↵ (W,R,V), s �HL ⇢
3 Hierarchical hybrid logic

A signature in hierarchical hybrid logic, HHL-signature in short, is a tuple(Prop,Nom,PROP,NOM) where Prop, Nom, PROP and NOM are four disjoint
sets of propositions and nominals corresponding to the two levels of assertion, called
the ‘lower’ and the ‘upper’ level, respectively.

The set of formulas for a signature (Prop,Nom,PROP,NOM) is organised in a
two-levels hierarchy.

Definition 3.1 (HHL-formulas) Let � = (Prop,Nom,PROP,NOM) be a HHL-
signature. The set FmHHL(�) of HHL-formulas is the smallest set such that:

● BFmHL(Prop,Nom) ⊆ FmHHL(�);● PROP ⊆ FmHHL(�);● NOM ⊆ FmHHL(�);● @ ⇢ ∈ FmHHL(�), for any ∈ NOM and ⇢ ∈ FmHHL(�);● �⇢ ∈ FmHHL(�), for any ⇢ ∈ FmHHL(�);● ¬⇢ ∈ FmHHL(�), for any ⇢ ∈ FmHHL(�);● ⇢ ∧ ⇢′ ∈ FmHHL(�), for any ⇢,⇢′ ∈ FmHHL(�).
As usual, Boolean connectives and the box modality are defined by abbreviation.

Note also that FmHL(Prop,Nom) ⊆ FmHHL(�).
Definition 3.2 (HHL-models) Let � = (Prop,Nom,PROP,NOM) be a HHL
signature. A Kripke �-model is a tuple

M = (W,R,V, (Mw)w∈W)
where

● W is a non empty set of the so called upper, or super, states;● R ⊆W ×W is a binary relation called the upper accessibility relation;● V ∶ PROP ∪ NOM → P(W) is a function where, for any ∈ NOM, V () is a

singleton. When it is implicitly clear, the element w ∈ V () will be identified as

the set V () itself.
3

Madeira, Neves, Martins and Barbosa

●
For any w ∈ W , Mw is a HL-pointed model Mw = �Hw, sw�, where Hw =(Ww,Rw, Vw) ∈ModHL(Prop,Nom) and sw ∈Ww.

Fig. 1. An almost trivial HHL model.

Definition 3.3 (HHL-Satisfaction) Let � = (Prop,Nom,PROP,NOM) be aHHL-signature and M = (W,R,V, (Mw)w∈W) be a �-model. The satisfaction rela-
tion between formulas, models and points is recursively defined as follows:

(i) M,w � ⇢ i↵ Hw, sw �HL ⇢, for ⇢ ∈ BFmHL(Prop,Nom);
(ii) M,w � i↵ w ∈ V (), for ∈ PROP;

(iii) M,w � i↵ V () = {w}, for ∈ NOM;

(iv) M,w � @ ⇢ i↵ M,V () � ⇢;
(v) M,w � �⇢ i↵ there is a w′ ∈W such that (w,w′) ∈ R and M,w′ � ⇢;
(vi) M,w � ¬⇢ i↵ it is not the case that M,w � ⇢;
(vii) M,w � ⇢ ∧ ⇢′ i↵ M,w � ⇢ and M,w � ⇢′

As in the standard case we write M � ⇢ when, for any w ∈W , M,w � ⇢, and � ⇢
when M � ⇢ for all M ∈ModHHL(�). These definitions extend to sets of formulas
as expected. Finally, for �∪ {⇢} ⊆ FmHHL(�), ⇢ is said to be a global consequence
of �, � � ⇢, if for any model M ∈ModHHL(�), M � � implies M � ⇢.
4 First-order correspondences

As usual in the introduction of a modal language, this section discusses how formulas
in hierarchical hybrid logic can be transformed into first-order ones. This is done
through the introduction of two possible correspondences: the first one follows the
well known recipe used in the standard translation of modal logic; the second entails
a di↵erent, less common perspective taking explicitly into account definability in
each possible world. Beyond the theoretical interest of these correspondences, they
pave the way to the e↵ective use of a number of proof assistants.

4.1 The standard translation

Definition 4.1 Let � = (Prop,Nom,PROP,NOM) be a HHL-signature. We de-
fine the two-sorted first-order signature �∗ = (S,F,P) as follows:
● the set of sorts S = {W,U}, where W is the sort of super-states and U the sorts
of sub-states.● the set of operation symbols F = {i ∶ W → U � i ∈ Nom} ∪ { ∶ → W � ∈
NOM} ∪ {Init ∶W → U};

4

Madeira, Neves, Martins and Barbosa

● the set of predicate symbols P = {R ∶W ×W, r ∶W × U × U, Sub ∶W × U} ∪ {p ∶
W ×U � p ∈ Prop} ∪ { ∶W � ∈ PROP}.
The purpose of operation symbol Sub is to explicitly relate (sub)states to super-

states, defining the inhabitants of each possible super-state. Although this con-
struction is not required for defining the standard translation, it plays a role in the
alternative translation introduced in the next section.

Definition 4.2 Let � = (Prop,Nom,PROP,NOM) be a HHL-signature. Given
a model M = (W,R, (Mw)w∈W , V) ∈ Mod(�), we define the model M∗ as follows:
sorts are realized by the carrier sets M∗

W =W and M∗
U = �w∈W Ww. The definition

for functions and predicates, respectively, is given by

M∗
i (w) = Vw(i) for i ∈ Nom

M∗ = V () for ∈ NOM

M∗
Init(w) = sw

M∗
R(w,w′) i↵ (w,w′) ∈ R

M∗
r (w,u, v) i↵ (u, v) ∈ Rw

M∗
Sub(w,u) i↵ u ∈Ww

M∗
p (w,u) i↵ u ∈ Vw(p), p ∈ Prop

M∗(w) i↵ w ∈ V (), ∈ PROP

Finally, we obtain the translation of formulas as follows:

Definition 4.3 [Standard translation] The standard translation ST consists of the
map

ST ∶ FmHHL(�)�→ FmFOL(�∗)
recursively defined as follows:

STX,u(p) = p(X,u) p ∈ Prop
STX,u(i) = u = i(X) i ∈ Nom

STX,u(@i⇢) = STX,i(X)(⇢) i ∈ Nom,⇢ ∈ FmHL(Prop,Nom)
STX,u(�⇢) = (∃v ∶ U)(r(X,u, v) ∧ STX,v(⇢)) ⇢ ∈ FmHL(Prop,Nom)
STX,u() = (X) ∈ PROP

STX,u() = X = ∈ NOM

STX,u(@ ⇢) = STX,u(⇢)[X � , u� Init()] ∈ NOM

STX,u(�⇢) = (∃Y ∶W)(R(X,Y) ∧ STY,Init(Y)(⇢))
STX,u(¬⇢) = ¬STX,u(⇢)

STX,u(⇢ ∧ ⇢′) = STX,u(⇢) ∧ STX,u(⇢′)
Notation ST ,Init()(⇢) is used for STX,u(⇢)[X � , u � Init()], when clear from
context.

5

Madeira, Neves, Martins and Barbosa

Lemma 4.4 Let � = (Prop,Nom,PROP,NOM) be a HHL-signature and M =(W,R, (Mw)w∈W , V) a �-model and ⇢ ∈ FmHL(Prop,Nom). Then, for any w ∈W ,

z ∈Hw,

Hw, z �HL ⇢ i↵ M∗ �FOL STX,u(⇢)[X � w,u� z]
where Mw = (Hw, sw).
Proof. By induction on the structure of formulas.

for ⇢ = p, p ∈ Prop
Hw, z �HL p⇔ { defn. of �HL}
z ∈ Vw(p)⇔ { defn. of M∗ and z ∈Ww}
M∗

p (w, z)⇔ { defn of �FOL}
M∗ �FOL p(X,u)[X � w,u� z]⇔ { defn of ST}
M∗ �FOL STX,u(p)[X � w,u� z]

for ⇢ = i, i ∈ Nom
Hw, z �HL i⇔ { defn. of �HL}
z = Vw(i)⇔ { defn. of M∗}
M∗

i (w) = z⇔ { defn of �FOL}
M∗ �FOL i(X) = u[X � w,u� z]⇔ { defn of ST}
M∗ �FOL STX,u(i)[X � w,u� z]

for ⇢ = @i', i ∈ Nom
Hw, z �HL @i'⇔ { defn. of �HL}
Hw, Vw(i) �HL '⇔ { I.H.}
M∗ �FOL STX,u(')[X � w,u� Vw(i)]⇔ { since Vw(i) =M∗

i (w) + I.H}
M∗ �FOL STX,i(X)(')[X � w,u� z]⇔ { defn of ST}
M∗ �FOL STX,u(@i')[X � w,u� z]

6

Madeira, Neves, Martins and Barbosa

for ⇢ = �'
Hw, z �HL �'⇔ { defn. of �HL}
Hw, v �HL ', for some v ∈Ww such that (z, v) ∈ Rw⇔ { I.H + defn of M∗}
M∗ �FOL STX,u(')[X � w,u� v]
for some v such that M∗

r (w, z, v)⇔ { defn of �FOL}
M∗ �FOL (∃v) r(X,u, v) ∧ STX,v(')[X � w,u� z]⇔ { defn of ST}
M∗ �FOL STX,u(�')[X � w,u� z]

The cases dealing with conjunction and negation follow directly from the induction
hypothesis. �
Theorem 4.5 Let � = (Prop,Nom,PROP,NOM) be a HHL-signature, M =(W,R, (Mw)w∈W , V) a �-model and ⇢ ∈ FmHHL(�). Then, for w ∈W ,

M,w � ⇢ i↵ M∗ �FOL STX,u(⇢)[X � w,u�M∗
Init(w)]

Proof. The proof proceeds by induction on the structure of formulas. Thus,

for ⇢ ∈ BFmHL(Prop,Nom)
M,w � ⇢⇔ { defn. of �}
Hw, sw �HL ⇢⇔ { since M∗

Init(w) = sw and Lemma 4.4}
M∗ �FOL STX,u(⇢)[X � w,u�M∗

Init(w)]
for ⇢ = @ ', ∈ NOM

M,w � @ '⇔ { defn. of �}
M,V () � '⇔ { I.H. }
M∗ �FOL ST ,u(')[X � w,u�M∗

Init(V ())]⇔ { since V () =M∗}
M∗ �FOL ST ,Init()(')⇔ { defn. of ST}
M∗ �FOL STX,u(@ ')[X � w,u�M∗

Init(w)]
for ⇢ = �'

M,w � �'
7

Madeira, Neves, Martins and Barbosa

⇔ { defn. of �}
M,w′ � ', for some w′ ∈W such that R(w,w′)⇔ { I.H. + defn. of M∗}
M∗ �FOL STY,v(')[X � w′, u�M∗

Init(w′)], for some w′ ∈W such that M∗
R(w,w′)⇔ { defn. of �FOL}

M∗ �FOL (∃Y ∶W)R(X,Y) ∧ STY,Init(Y)(')[X � w]⇔ { defn. of ST}
M∗ �FOL STX,u(�')[X � w,u�M∗

Init(w)]
Again, the cases dealing with conjunction and negation follow directly from the
induction hypothesis. �
4.2 A di↵erent perspective

As mentioned above, an alternative translation, not standard in modal logic, will
be considered now.

Let � = (Prop,Nom,PROP,NOM) be a HHL-signature. Then ModFOL
D (�∗)

denotes the class of all models of M ∈Mod(�∗) such that for each w ∈W , MInit(w)
and Mi(w), for any nominal i, belong to the universe associated to w, that is
MSub(w,MInit(w)) and MSub(w,Mi(w)) for any nominal i. If Nom is finite, we
denote the formula

(∀X ∶W)�Sub(X,Init(X)) ∧ �
i∈Nom

Sub(X, i(X))�
by D(�). And we have, ModFOL

D (�∗) = {M ∈Mod(�∗) �M �FOL D(�)}.
Definition 4.6 Let � = (Prop,Nom,PROP,NOM) be a HHL-signature. The op-
erator ○ ∶ModFOL

D (�∗)→ModHHL(�)
is defined as follows: given a model M ∈ ModFOL

D (�∗), we construct the model
M○ = (W ○,R○, (M○

w)w∈W ○ , V ○) as follows:
● W ○ =MW● R○ =MR● for any ∈ PROP, V ○() =M● for any ∈ NOM, V ○() = {M }
and for any w ∈W ○, M○

w = �H○w, s○w� where H○w = (W ○
w,R

○
w, V

○
w) is such that

● W ○
w = {a �MSub(w,a)}● R○w = {(a, b) �Mr(w,a, b) and MSub(w,a) and MSub(w, b)}● for any p ∈ Prop, V ○w(p) = {a �Mp(w,a) and MSub(w,a)}● for any i ∈ Nom, V ○w(i) =Mi(w)● s○w =MInit(w)

8

Madeira, Neves, Martins and Barbosa

Observe the role of D(�) in asserting the definability of the local valuations Vw

with respect to its functionality over Nom, as well as with respect to definability of
the (local) initial states. In order to obtain a translation that is compatible with
the operator ○ the standard translation defined above has to be constrained, leading
to the following definition:

Definition 4.7 [(constrained) standard translation]

ST○X,u(p) = Sub(X,u) ∧ p(X,u), p ∈ Prop
ST○X,u(i) = Sub(X,u) ∧ u = i(X), i ∈ Nom
ST○X,u(�⇢) = (∃v ∶ U)(Sub(X,v) ∧ r(X,u, v) ∧ ST○X,v(⇢)), ⇢ ∈ FmHL(Prop,Nom)

and it is defined as in ST for the remaining cases.

Lemma 4.8 Let � = (Prop,Nom,PROP,NOM) be a HHL-signature, M ∈
ModFOL

D (�∗) and ⇢ ∈ FmHL(Prop,Nom). Then, for any w ∈W ○
and z ∈H○w,

H○w, z �HL ⇢ i↵ M �FOL ST○X,u(⇢)[X � w,u� z]
Proof. The proof is by induction on the structure of formulas. Thus,

for ⇢ = p, p ∈ Prop
M �FOL ST○X,u(p)[X � w,u� z]⇔ { defn. of ST○}
M �FOL (Sub(X,u) ∧ p(X,u))[X � w,u� z]⇔ { defn. of �}
MSub(w, z) and Mp(w, z)⇔ { defn. of M○}
z ∈ V ○w(p)⇔ { defn. of �HL}
H○w, z �HL p

for ⇢ = i, i ∈ Nom
M �FOL ST○X,u(i)[X � w,u� z]⇔ { defn. of ST○}
M �FOL (Sub(X,u) ∧ u = i(x))[X � w,u� z]⇔ { defn. of �}
MSub(w, z) and z =Mi(w))⇔ { defn. of M○}
z = V ○w(i)⇔ { defn. of �HL}
H○w, z �HL p

9

Madeira, Neves, Martins and Barbosa

for ⇢ = @i', i ∈ Nom
M �FOL ST○X,u(@i')[X � w,u� z]⇔ { defn. of ST○}
M �FOL ST○X,i(X)(')[X � w,u� z]⇔ { substitution}
M �FOL ST○X,u(')[X � w,u�Mi(w)]⇔ { I.H.}
H○w,Mi(w) �HL '⇔ { defn. of �HL}
H○w, z �HL @i'

for ⇢ = �'
M �FOL ST○X,u(�')[X � w,u� z]⇔ { defn. of ST○}
M �FOL (∃v ∶ U)(Sub(X,v) ∧ r(X,u, v) ∧ ST○X,v('))[X � w,u� z]⇔ { defn. of �}
there is a ∈MU such that MSub(w,a) and Mr(w, z, a) and
M �FOL ST○X,v(')[X � w, v � a]⇔ { I.H.}
H○w, a �HL ', for some a ∈MU such that MSub(w,a) and Mr(w, z, a)⇔ { by def. of �HL}
H○w, z �HL �' �

Theorem 4.9 Let � = (Prop,Nom,PROP,NOM) be a HHL-signature, M ∈
ModFOL

D (�∗) and ⇢ ∈ FmHHL(�). Then, for every w ∈W
M○,w � ⇢ i↵ M �FOL ST○X,u(⇢)[X � w,u�MInit(w)]

Proof.

for ⇢ ∈ BFmHL(Prop,Nom)
M �FOL ST○X,u(⇢)[X � w,u�MInit(w)]⇔ { Lemma 4.8 }
H○w, s○w �HL ⇢⇔ { defn. of �}
M○,w � ⇢

for ⇢ = @ ', ∈ NOM

M �FOL ST○X,u(@ ')[X � w,u�MInit(w)]⇔ { defn. of ST○}
10

Madeira, Neves, Martins and Barbosa

M �FOL STX,u(')[X � , u� Init()]⇔ { I.H.}
M○, � '⇔ { defn. of �}
M○,w � @ '

for ⇢ = �'
M �FOL ST○X,u(�')[X � w,u�MInit(w)]⇔ { defn. of ST○}
M �FOL (∃Y ∶W)R(X,Y) ∧ ST○Y,Init(Y)('))[X � w,u�MInit(w)]⇔ { defn. of �}
there is w′ ∈MW st MR(w,w′) and M �FOL ST○Y,Init(Y)('))[Y � w′, u�MInit(w)]⇔ { substitution }
there is w′ ∈MW st MR(w,w′) and M �FOL ST○Y,u('))[Y � w′, u�MInit(w′)]⇔ { I.H.}
there is w′ ∈MW st MR(w,w′) and M○,w′ � '⇔ { defn. of �HL}
M○,w � �'

The cases of conjunction and negation are dealt similarly, easily achieved by direct
application of induction hypothesis. �

The operator ○ is not in general injective. However it is surjective. In fact,
given an M ∈ ModHHL(�) it is not di�cult to see that M = (M∗)○, and M∗ ∈
ModFOL

D (�∗).
Corollary 4.10 Let � = (Prop,Nom,PROP,NOM) be a HHL-signature with fi-

nite sets Nom and NOM. Then, for any � ∪ {⇢} ⊆ FmHHL(�), we have

� � ⇢ i↵ �∗ ∪D(�) �FOL (∀X ∶W)ST○X,Init(X)(⇢)
where �∗ = {(∀X ∶W),ST○X,Init(X)(⇢) �⇢ ∈ �}
Proof. Suppose that � � ⇢. Let M be a �∗ first order model of �∗ ∪ D(�).
Then, by Theorem 4.9, M○ �HL �. Hence, M○ �HL ⇢. That is, for all w ∈ W
M○,w �HL ⇢. Again, by Theorem 4.9 (in the opposite direction), M �FOL (∀X ∶
W)ST○X,Init(X)(⇢).

Conversely, suppose �∗ ∪D(�) �FOL (∀X ∶ W)ST○X,Init(X)(⇢). Let N be a �-

model such that N � �. Since ○ is surjective there is an M ∈ ModFOL
D (�∗) such

that N =M○. Since N � �, by Theorem 4.9, M is a model of �∗ ∪D(�). Therefore
M �FOL (∀X ∶W)ST○X,Init(X)(⇢). Again, by Theorem 4.9, M○ = N � ⇢. �

11

Madeira, Neves, Martins and Barbosa

5 Hennessy-Milner Theorem for HHL
Bisimulation is a main tool for the study of transition systems which, on their turn,
are pervasive structures in computational phenomena. It is also a good example
of the fruitful interaction between modal logic and Computer science. This section
characterises a notion of hierarchical bisimulation for models of HHL and proves
a corresponding Hennessy-Milner result relating hybrid equivalence between two
models with the existence of a bisimulation relating them.

Definition 5.1 Let � = (Prop,Nom,PROP,NOM) be a HHL-signature. An
hierarchical bisimulation between two �-models M = (W,R, (Mw)w∈W , V) and
M ′ = (W ′,R′, (M ′

w)w∈W ′ , V ′) consists of a relation ⊆ W ×W ′ such that,

(NOM) for any ∈ NOM, V () V ′()
- for any w ∈W,w′ ∈W ′, w w′ implies:
(ATOMS) for any ∈ PROP ∪NOM, w ∈ V () i↵ w′ ∈ V ′();
(ZIG) for any v ∈W such that (w, v) ∈ R there is a v′ ∈W ′ such that v v′ and(w′, v′) ∈ R′;
(ZAG) for any v′ ∈ W ′ such that (w′, v′) ∈ R′ there is a v ∈ W such that v v′
and (w, v) ∈ R.

(LOCAL) Mw and M ′
w′ are bisimilar, i.e., there is a relation Bw

w′ ∶ Hw ×Hw′
such that
(init) sw Bw

w′s′w′ ;
(nom) for any i ∈ Nom, Vw(i)Bw

w′V ′w′(i);
- for any u ∈Hw, u

′ ∈H ′w such that uBw
w′u′,

(atoms) for any p ∈ Prop ∪Nom, u ∈ Vw(p) i↵ u′ ∈ V ′w′(p);
(zig) for any v ∈Hw such that (u, v) ∈ Rw there is a v′ ∈H ′w′ such that vBw

w′v′
and (u′, v′) ∈ R′w′ ;

(zag) for any v′ ∈ H ′w′ such that (u′, v′) ∈ R′w′ there is a v ∈ Hw such that
vBw

w′v′ and (u, v) ∈ Rw.

An example in depicted in Fig. 2. The reader may easily notice the existence of
local bisimulations relating the transition systems inside each of the two states of
the system in the left with the one in the right, plus a global bisimulation relating
precisely those (global) states.

Fig. 2. A HHL-bisimulation.

Lemma 5.2 Let M and M ′
be two HHL-models over the same signature. The set

of hierarchical bisimulations between M and M ′
is closed under unions.

12

Madeira, Neves, Martins and Barbosa

Proof. Let 1, 2 ⊆ �W � × �W ′� be two bisimulations between models M and M ′.
Their union = 1 ∪ 2 is also an hierarchical bisimulation because

● Clearly, all points named by nominals are related by as they are related both
by 1 and 2. Moreover, for any pair (w,w′) such that w w′ either w 1w′
or w 2w′. As both 1 and 2 are hierarchical bisimulations, clauses of (i.) in
Definition. 5.1 hold for .● A similar argument applies to both (ZIG) and (ZAG) conditions. For clause (iv)
let (w, v) ∈ R and w w′. Then, either w 1w′ or w 2w′. Since, 1 and 2 are
bisimulations, we have that there is a v′ ∈ W ′ such that v 1v′ or v 2v′. Hence
v v′. The condition (ZAG) condition is proved similarly. �
Similarly, one may prove that hierarchical bisimulations are closed for compo-

sition as well. Bisimulation invariance is, on the other hand, a main, expected
result.

Theorem 5.3 (Bisimulation invariance) Let M and M ′
be two HHL-models

over the same signature � = (Prop,Nom, PROP,NOM) and a bisimulation be-

tween them. Then, for any w w′ and for any ⇢ ∈ FmHHL(�),
M,w � ⇢ i↵ M ′,w′ � ⇢

Proof. The proof is by induction on the structure of the sentences.

⇢ ∈ BFmHL(Prop,Nom)
M,w � ⇢⇔ { defn. of �}(Hw, sw) �HL ⇢⇔ { �}(H ′w′ , s′w′) �HL ⇢⇔ { defn. of �}
M ′,w′ � ⇢

Step � comes from the (init) clause in Definition 5.1, sw Bw
w′sw′ , and the stan-

dard bisimulation invariance of (propositional)-hybrid logic (e.g. [tC05]). How-
ever, this proof can be achieved in a complete analogy with the (top-level) cases
proved above. For instance, in order to proof the invariance of ⇢ = i, for i ∈ Nom,
we take the bisimilar initial states sw and s′w′ (by (init)) and we reproduce ex-
actly the same steps of the ⇢ = proof, but considering the condition (nom) in
the place of (NOM). The other cases is obtained exactly in the same way.

⇢ = , ∈ NOM

M,w �⇔ { defn. of �}
V () = w⇔ { ATOMS of Defn. 5.1}

13

Madeira, Neves, Martins and Barbosa

V ′() = w′⇔ { defn. of �}
M ′,w′ �

⇢ = , ∈ PROP

M,w �⇔ { defn. of �}
w ∈ V ()⇔ { ATOMS of Defn. 5.1}
w′ ∈ V ′()⇔ { defn. of �}
M ′,w′ �

⇢ = @ '

M,w � @ '⇔ { defn. of �}
M,V () � '⇔ { I.H. + NOM of Defn. 5.1}
M ′, V ′() � '⇔ { defn. of �}
M ′,w′ � @ '

⇢ = �'
M,w � �'⇔ { defn. of �}
M,v � ' for some v ∈W such that (w, v) ∈ R⇔ { I.H. + ZIG for ⇒ + ZAG for ⇐ }
M ′, v′ � ' for some v′ ∈W ′ such that (w′, v′) ∈ R′⇔ { defn. of �}
M ′,w′ � �' �

A HHL-model M is image-finite if for each state w ∈W , the set {v ∶ (w, v) ∈ R}
and the sets {v ∶ (u, v) ∈ Rw,w ∈W}, u ∈Ww, are finite. Note that no condition is
imposed on the cardinality of W .

Theorem 5.4 Let � be a HHL-signature and M and M ′
two image-finite �-

models, respectively. Then, for every w ∈W and w′ ∈W ′
, the following conditions

are equivalent:

(i) M,w � ⇢ i↵ M ′,w′ � ⇢, for any formula ⇢ ∈ FmHHL(�)
(ii) There is a bisimulation between M and M ′

such that w w′.
14

Madeira, Neves, Martins and Barbosa

Proof. We have just to prove that (i) implies (ii). Let us show that

= �(w,w′) ∈W ×W ′ ∶ for any ⇢ ∈ FmHHL(�),M,w � ⇢ i↵ M ′,w′ � ⇢�
is a bisimulation. The conditions (ATOM) and (NOM) follow directly from the
invariance of the sentences ⇢ ∈ NOM ∪ PROP. Since the image-finitness of HHL-
models entails the image-finitness of its local Mw,w ∈W , we have that the condition
(ATOMS) corresponds to the standard Hennessy-Milner result of the propositional
hybrid logic (e.g. [tC05]).

For the (ZIG) condition, assume that w w′ and let u ∈W such that (w,u) ∈ R.
To obtain a contradiction, suppose that there is no u′ ∈ W ′ with (w′, u′) ∈ R′ and
u u′. As in the standard case the image-finite condition makes S′ = {u′ ∶ (w′, u′) ∈
R′} finite. Moreover, S′ cannot be empty since in such a case M,w � ¬ � (@),
which is incompatible with the fact that M,w � �(@) (since (w,u) ∈ R). By
assumption, for every z ∈ S′ there is a formula z such that M,u � z and it is false
that M ′, z � z Consider now the conjunction

 = �
z∈S′ z

of all of these formulas. Hence we have that M,w � � and M ′,w′ �� � , which
contradicts w w′. �
6 Discussion and future work

In this paper we introduced HHL – a hierarchical variant of hybrid logic. We pre-
sented first order correspondence results and proved a Hennessy-Milner like theorem
relating (hierarchical) bisimulation and modal equivalence for HHL.

On the more practical side, it is clear that HHL is appropriate to reason about
hierarchical transition systems, as they appear in, e.g. reconfigurable programs. The
logic, however, is unable to express arbitrary multi-level transitions, thus enforcing a
particular specification discipline. Actually, there are some variants (e.g. [MMB15])
whose motivation stems directly from Computer Science applications which may
require more complex features. For example, statecharts, already mentioned in the
Introduction, comprise di↵erent forms of inter-level transitions, including multiple-
source and multiple-target ones as well as simultaneous firing of non-conflicting
transitions and their prioritisation, which cannot be captured in HHL.

The process of constructing HHL on top of standard propositional hybrid logic
can be made generic through hybridisation, a procedure introduced in [MMDB11]
that consists of taking an arbitrary logic and to systematically develop on top of it
the syntax and semantic features of hybrid logic. To be completely general, this is
framed in the context of the institution theory of Goguen and Burstall [GB92], each
logic (base and hybridised) being treated abstractly as an institution. Actually,HHL can be obtained through hybridisation of propositional hybrid logic. The
latter, however, can be replaced by other logics resulting from the same process being
applied to whatever logics are found interesting to specify configurations (states)
at the lower level of the hierarchy — e.g., equational, first-order, fuzzy, etc. The

15

Madeira, Neves, Martins and Barbosa

application of this idea on the rigorous development of reconfigurable systems was
discussed in [Mad13,MMBH15,MNBM16].

Concerning strictly logical properties, we would like to discuss decidability and
completeness properties of HHL. For this reason, we intend to explore, among
other things, the finite model property for this logic, as well complete proof calculi,
resorting to our previous work [NMMB16].

Acknowledgements

This work is supported by ERDF European Regional Development Fund, through the COMPETE Pro-

gramme, and by National Funds through FCT - Portuguese Foundation for Science and Technology - within

projects POCI-01-0145-FEDER-016692 and UID/MAT/04106/2013, as well by project ”SmartEGOV: Harness-

ing EGOV for Smart Governance (Foundations, Methods, Tools) / NORTE-01-0145-FEDER-000037”, sup-

ported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020

Partnership Agreement. A. Madeira and R. Neves are further supported by the FCT individual grants

SFRHBPD103004/2014 and SFRH/BD/52234/2013 respectively .

References

[BAPG03] Richard Banach, Farhad Arbab, George A. Papadopoulos, and John R. W. Glauert. A multiply
hierarchical automaton semantics for the iwim coordination model. J. UCS, 9(1):2–33, 2003.

[Bla00] Patrick Blackburn. Representation, reasoning, and relational structures: a hybrid logic
manifesto. Logic Journal of IGPL, 8(3):339–365, 2000.

[Bra10] Torben Braüner. Hybrid Logic and its Proof-Theory. Applied Logic Series. Springer, 2010.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Maurice Nivat, editor, Foundations
of Software Science and Computation Structure, First International Conference, FoSSaCS’98,
Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, volume 1378 of Lecture Notes in
Computer Science, pages 140–155. Springer, 1998.

[GB92] Joseph A. Goguen and Rod M. Burstall. Institutions: Abstract model theory for specification
and programming. J. ACM, 39(1):95–146, 1992.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Program.,
8(3):231–274, 1987.

[Mad13] Alexandre Madeira. Foundations and techniques for software reconfigurability. PhD thesis,
Universidades do Minho, Aveiro and Porto (Joint MAP-i Doctoral Programme), July 2013.

[MFMB11] Alexandre Madeira, José M. Faria, Manuel A. Martins, and Lúıs Soares Barbosa. Hybrid
specification of reactive systems: An institutional approach. In G. Barthe, A. Pardo, and
G. Schneider, editors, Software Engineering and Formal Methods (SEFM 2011, Montevideo,
Uruguay, November 14-18, 2011), volume 7041 of Lecture Notes in Computer Science, pages
269–285. Springer, 2011.

[MMB15] Alexandre Madeira, Manuel A. Martins, and Lúıs Soares Barbosa. A logic for n-dimensional
hierarchical refinement. In John Derrick, Eerke A. Boiten, and Steve Reeves, editors, Proceedings
17th International Workshop on Refinement, Refine@FM 2015, Oslo, Norway, 22nd June
2015., volume 209 of EPTCS, pages 40–56, 2015.

[MMBH15] Alexandre Madeira, Manuel A. Martins, Lúıs Soares Barbosa, and Rolf Hennicker. Refinement
in hybridised institutions. Formal Asp. Comput., 27(2):375–395, 2015.

[MMDB11] Manuel A. Martins, Alexandre Madeira, Răzvan Diaconescu, and Lúıs Soares Barbosa.
Hybridization of institutions. In A. Corradini, B. Klin, and C. Ĉırstea, editors, Algebra and
Coalgebra in Computer Science (CALCO 2011, Winchester, UK, August 30 - September 2,
2011), volume 6859 of Lecture Notes in Computer Science, pages 283–297. Springer, 2011.

[MNBM16] Alexandre Madeira, Renato Neves, Lúıs Soares Barbosa, and Manuel A. Martins. A method
for rigorous design of reconfigurable systems. Sci. Comput. Program., 132:50–76, 2016.

[NMMB16] Renato Neves, Alexandre Madeira, Manuel A. Martins, and Lúıs Soares Barbosa. Proof theory
for hybrid(ised) logics. Sci. Comput. Program., 126:73–93, 2016.

[tC05] Balder David ten Cate. Model Theory for Extended Modal Languages. PhD thesis, Institute
for Logic, Language and Computation Universiteit van Amsterdam, 2005.

16

Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Inversion, Fixed Points, and the

Art of Dual Wielding

Robin Kaarsgaard

1,2

DIKU, Department of Computer Science, University of Copenhagen

Abstract

In category theory, the symbol † (“dagger”) is used to denote (at least) two very di↵erent operations on
morphisms: Taking their adjoint (in the context of dagger categories) and finding their least fixed point (in
the context of domain theory and categories enriched in domains). In the present paper, we wield both of
these daggers at once and consider dagger categories enriched in domains. Exploiting the view of dagger
categories as enriched in involutive monoidal categories, we develop a notion of a monotone dagger structure
as a dagger structure that is well behaved with respect to the enrichment, and show that such a structure
leads to pleasant inversion properties of the fixed points that arise as a result of this enrichment. Notably,
such a structure guarantees the existence of fixed point adjoints, which we show are intimately related to the
conjugates arising from the canonical involutive monoidal structure in the enrichment. Finally, we relate the
results to applications in the design and semantics of reversible programming languages.

Keywords: reversible computing, dagger categories, domain theory, enriched category theory

1 Introduction

Dagger categories are categories that are canonically self-dual, assigning to each
morphism an adjoint morphism in a contravariantly functorial way. In recent
years, dagger categories have been used to capture central aspects of both re-
versible [28,29,31] and quantum [2,35,13] computing. Likewise, domain theory and
categories enriched in domains (see, e.g., [3,15,16,4,7,38]) have been successful since
their inception in modelling both recursive functions and data types in programming.

In the present paper, we develop the art of dual wielding the two daggers that
arise from respectively dagger category theory and domain theory (where the very
same †-symbol is occasionally used to denote fixed points, cf. [15,16]). Concretely,
we ask how these structures must interact in order to guarantee that fixed points
are well-behaved with respect to the dagger, in the sense that each functional has
a fixed point adjoint [31]. Previously, the author and others showed that certain

1 Email: robin@di.ku.dk
2 The author would like to thank Martti Karvonen, Mathys Rennela, and Robert Glück for their useful
comments, corrections, and suggestions; and to acknowledge the support given by COST Action IC1405
Reversible computation: Extending horizons of computing.

c�2017 Published by Elsevier Science B. V.

Kaarsgaard

domain enriched dagger categories, join inverse categories, had such well-behaved
fixed points [31]. Here, we identify a su�cient condition for fixed points to be
well-behaved in the presence of a dagger, allowing us not only to generalize previous
results, but also to show new ones about parametrized fixed points.

A slogan of domain theory could be that well-behaved functions are continuous –
and as a corollary, that well-behaved functors are locally continuous. When augmented
with a dagger, the proper addendum to this slogan turns out to be that well-behaved
inversion is monotone, captured in the definition of a monotone dagger structure.

Given a domain enriched category C with a monotone dagger structure, we
develop an induced involutive monoidal category of domains enriching C , which we
think of as the category of continuous functionals on C . This canonically constructed
involutive structure at the level of functionals proves fruitful in unifying seemingly
disparate concepts from the literature under the banner of conjugation of functionals.
Notably, we show that the conjugate functionals arising from this involutive structure
coincide with fixed point adjoints [5,31], and that they occur naturally both in proving
the ambidexterity of dagger adjunctions [23] and in natural transformations that
preserve the dagger (which include dagger traces [36]).

While these results could be applied to model a reversible functional programming
language with general recursion and parametrized functions (such as an extended ver-
sion of Theseus [29]), they are general enough to account for even certain probabilistic
and nondeterministic models of computation.

Overview: A brief introduction to the relevant background material on dag-
ger categories, (DCPO-)enriched categories, iteration categories, and involutive
monoidal categories is given in Section 2. In Section 3 the concept of a monotone

dagger structure on a DCPO-category is introduced, and it is demonstrated that
such a structure leads to the existence of fixed point adjoints for (ordinary and
externally parametrized) fixed points, given by their conjugates. We also explore
natural transformations in this setting, and develop a notion of self-conjugate nat-
ural transformations, of which †-trace operators are examples. Finally, we discuss
potential applications and avenues for future research in Section 4, and end with a
few concluding remarks in Section 5.

2 Background

Though familiarity with basic category theory, including monoidal categories, is
assumed, we recall here some basic concepts relating to dagger categories, (DCPO)-
enriched categories, iteration categories, and involutive monoidal categories [26,8].
The material is only covered here briefly, but can be found in much more detail in
the numerous texts on dagger category theory (see, e.g., [35,2,21]), enriched category
theory (for which [33] is the standard text), and domain theory and iteration
categories (see, e.g., [3,16]).

2.1 Dagger categories

A dagger category (or †-category) is a category equipped with a suitable method for
flipping the direction of morphisms, by assigning to each morphism an adjoint in a

2

Kaarsgaard

manner consistent with composition. They are formally defined as follows.

Definition 2.1 A dagger category is a category C equipped with an functor (�)† :

C op ! C satisfying that id†X = idX and f

†† = f for all identities X

idX��! X and

morphisms X
f�! Y .

Dagger categories, dagger functors (i.e., functors F satisfying F (f †) = F (f)†),
and natural transformations form a 2-category, DagCat.

A given category may have several di↵erent daggers which need not agree. An
example of this is the groupoid of finite-dimensional Hilbert spaces and linear
isomorphisms, which has (at least!) two daggers: One maps linear isomorphisms to
their linear inverse, the other maps linear isomorphisms to their hermitian conjugate.
The two only agree on the unitaries, i.e., the linear isomorphisms which additionally
preserve the inner product. For this reason, one would in principle need to specify
which dagger one is talking about on a given category, though this is often left
implicit (as will also be done here).

Let us recall the definition of the some interesting properties of morphisms in a
dagger category: By theft of terminology from linear algebra, say that a morphism

X

f�! Y in a dagger category is hermitian or self-adjoint if f = f

†, and unitary if it is
an isomorphism and f

�1 = f

†. Whereas objects are usually considered equivalent if
they are isomorphic, the “way of the dagger” [23] dictates that all structure in sight
must cooperate with the dagger; as such, objects ought to be considered equivalent
in dagger categories only if they are isomorphic via a unitary map.

We end with a few examples of dagger categories. As discussed above, FHilb is
an example (the motivating one, even [35]) of dagger categories, with the dagger
given by hermitian conjugation. The category PInj of sets and partial injective
functions is a dagger category (indeed, it is an inverse category [32,12]) with f

†

given by the partial inverse of f . Similarly, the category Rel of sets and relations
has a dagger given by R

† = R

�, i.e., the relational converse of R. Noting that a
dagger subcategory is given by the existence of a faithful dagger functor, it can be
shown that PInj is a dagger subcategory of Rel with the given dagger structures.

2.2 DCPO-categories and other enriched categories

Enriched categories (see, e.g., [33]) capture the idea that homsets on certain categories
can (indeed, ought to) be understood as something other than sets – or in other
words, as objects of a another category than Set. A category C is enriched in
a monoidal category V if all homsets C (X,Y) of C are objects of V , and for all
objects X,Y, Z of C , V has families of morphisms C (Y, Z)⌦ C (X,Y) ! C (X,Z)
and I ! C (X,X) corresponding to composition and identities in C , subject to
commutativity of diagrams corresponding to the usual requirements of associativity
of composition, and of left and right identity. As is common, we will often use the
shorthand “C is a V -category” to mean that C is enriched in the category V .

We focus here on categories enriched in the category of domains (see, e.g., [3]),
i.e., the category DCPO of pointed directed complete partial orders and continuous
maps. A partially ordered (X,v) is said to be directed complete if every directed
set (i.e., a non-empty A ✓ X satisfying that any pair of elements of A has a

3

Kaarsgaard

supremum in A) has a supremum in X. A function f between directed complete
partial orders is monotone if x v y implies f(x) v f(y) for all x, y, and continuous
if f(supA) = supa2A{f(a)} for each directed set A (note that continuity implies
monotony). A directed complete partial order is pointed if it has a least element
? (or, in other words, if also the empty set has a supremum), and a function f

between such is called strict if f(?) = ? (i.e., if also the supremum of the empty
set is preserved 3). Pointed directed complete partial orders and continuous maps
form a category, DCPO.

As such, a category enriched in DCPO is a category C in which homsets C (X,Y)
are directed complete partial orders, and composition is continuous. Additionally,
we will require that composition is strict (meaning that ? � f = ? and g � ? = ?
for all suitable morphisms f and g), so that the category is actually enriched in the
category DCPO! of directed complete partial orders and strict continuous functions,
though we will not otherwise require functions to be strict.

Enrichment in DCPO provides a method for constructing morphisms in the
enriched category as least fixed points of continuous functions between homsets:
This is commonly used to model recursion. Given a continuous function C (X,Y)

'�!
C (X,Y), by Kleene’s fixed point theorem there exists a least fixed point X

fix'��! Y

given by supn2!{'n(?)}, where 'n is the n-fold composition of ' with itself.

2.3 Parametrized fixed points and iteration categories

Related to the fixed point operator is the parametrized fixed point operator, an

operator pfix assigning morphisms of the formX⇥Y

 �! X to a morphism Y

pfix ���! X

satisfying equations such as the parametrized fixed point identity

pfix = � hpfix , idY i

and others (see, e.g., [25,15]). Parametrized fixed points are used to solve domain
equations of the form x = (x, p) for some given parameter p 2 Y . Indeed, if

for a continuous function X ⇥ Y

 �! X we define 0(x, p) = x and

n+1(x, p) =
 (n(x, p), p), we can construct its parametrized fixed point in DCPO in a way
reminiscent of the usual fixed point by

(pfix)(p) = sup
n2!

{ n(?X , p)} .

In fact, a parametrized fixed point operator may be derived from an ordinary fixed
point operator by (pfix)(p) = fix (�, p). Similarly, we may derive an ordinary

fixed point operator from a parametrized one by considering a morphism X

'�! X

to be parametrized by the terminal object 1, so that the fixed point of X
'�! X is

given by the parametrized fixed point of X ⇥ 1
⇡
1�! X

'�! X.

The parametrized fixed point operation is sometimes also called a dagger oper-

ation [15], and denoted by f

† rather than pfix f . Though this is indeed the other

3 This is not the case in general, as continuous functions are only required to preserve least upper bounds
of directed sets, which, by definition, does not include the empty set.

4

Kaarsgaard

dagger that we are wielding, we will use the phrase “parametrized fixed point” and
notation “pfix” to avoid unnecessary confusion.

An iteration category [16] is a cartesian category with a parametrized fixed point
operator that behaves in a canonical way. The definition of an iteration category
came out of the observation that the parametrized fixed point operator in a host of
concrete categories (notably DCPO) satisfy the same identities. This lead to an
elegant semantic characterization of iteration categories, due to [16].

Definition 2.2 An iteration category is a cartesian category with a parametrized
fixed point operator satisfying all identities (of the parametrized fixed point operator)
that hold in DCPO.

Note that the original definition defined iteration categories in relation to the
category CPOm of !-complete partial orders and monotone functions, rather than
to DCPO. However, the motivating theorem [16, Theorem 1] shows that the
parametrized fixed point operator in CPOm satisfies the same identities as the one
found in CPO (i.e., with continuous rather than monotone functions). Since the
parametrized fixed point operator of DCPO is constructed precisely as it is in CPO
(noting that !-chains are directed sets), this definition is equivalent to the original.

2.4 Involutive monoidal categories

An involutive category [26] is a category in which every object X can be assigned a

conjugate object X in a functorial way such that X ⇠= X. A novel idea by Egger [14]
is to consider dagger categories as categories enriched in an involutive monoidal

category. We will return to this idea in Section 3.1, and recall the relevant definitions
in the meantime (due to [26], compare also with bar categories [8]).

Definition 2.3 A category V is involutive if it is equipped with a functor V
(�)��! V

(the involution) and a natural isomorphism id
◆
=) (�) satisfying ◆X = ◆X .

Borrowing terminology from linear algebra, we call X (respectively f) the
conjugate of an object X (respectively a morphism f), and say that an object
X is self-conjugate if X ⇠= X. Note that since conjugation is covariant, any category

C can be made involutive by assigning X = X, f = f , and letting id
◆
=) (�) be

the identity in each component; as such, an involution is a structure rather than
a property. Non-trivial examples of involutive categories include the category of
complex vector spaces VectC, with the involution given by the usual conjugation
of complex vector spaces; and the category Poset of partially ordered sets and
monotone functions, with the involution given by order reversal.

When a category is both involutive and (symmetric) monoidal, we say that it is
an involutive (symmetric) monoidal category when these two structures play well
together, as in the following definition [26].

Definition 2.4 An involutive (symmetric) monoidal category is a (symmetric)
monoidal category V which is also involutive, such that the involution is a monoidal

functor, and id) (�) is a monoidal natural isomorphism.

5

Kaarsgaard

This specifically gives us a natural family of isomorphisms X ⌦ Y

⇠= X ⌦ Y , and
when the monoidal product is symmetric, this extends to a natural isomorphism
X ⌦ Y

⇠= Y ⌦ X. This fact will turn out to be useful later on when we consider
dagger categories as enriched in certain involutive symmetric monoidal categories.

3 Domain enriched dagger categories

Given a dagger category that also happens to be enriched in domains, we ask how
these two structures ought to interact with one another. Since domain theory dictates
that the well-behaved functions are precisely the continuous ones, a natural first
answer would be to that the dagger should be locally continuous; however, it turns
out that we can make do with less.

Definition 3.1 Say that a dagger structure on DCPO-category is monotone if the
dagger is locally monotone, i.e., if f v g implies f † v g

† for all f and g.

In the following, we will use the terms “DCPO-category with a monotone dagger
structure” and “DCPO-†-category” interchangably. That this is su�cient to get
what we want – in particular to obtain local continuity of the dagger – is shown in
the following lemma.

Lemma 3.2 In any DCPO-†-category, the dagger is an order isomorphism on

morphisms; in particular it is continuous and strict.

Proof. For C a dagger category, C ⇠= C op so C (X,Y) ⇠= C op(X,Y) = C (Y,X) for
all objects X,Y ; that this isomorphism of hom-objects is an order isomorphism
follows directly by local monotony. 2

Let us consider a few examples of DCPO-†-categories.

Example 3.3 The category Rel of sets and relations is a dagger category, with the
dagger given by R

† = R

�, the relational converse of R (i.e., defined by (y, x) 2 R

� i↵
(x, y) 2 R) for each such relation. It is also enriched in DCPO by the usual subset
ordering: Since a relation X ! Y is nothing more than a subset of X ⇥Y , equipped
with the subset order � ✓ � we have that sup(�) =

S
R2�R for any directed set

� ✓ Rel(X ,Y). It is also pointed, with the least element of each homset given by
the empty relation.

To see that this is a monotone dagger structure, let X R,S��! Y be relations and
suppose that R ✓ S. Let (y, x) 2 R

�.Since (y, x) 2 R

� we have (x, y) 2 R by
definition of the relational converse, and by the assumption that R ✓ S we also
have (x, y) 2 S. But then (y, x) 2 S

� by definition of the relational converse, so
R

† = R

� ✓ S

� = S

† follows by extensionality.

Example 3.4 We noted earlier that the category PInj of sets and partial injective
functions is a dagger subcategory of Rel, with f

† given by the partial inverse (a
special case of the relational converse) of a partial injection f . Further, it is also a

DCPO-subcategory of Rel; in PInj, this becomes the relation that for X
f,g��! Y ,

f v g i↵ for all x 2 X, if f is defined at x and f(x) = y, then g is also defined at x
and g(x) = y. Like Rel, it is pointed with the nowhere defined partial function as

6

Kaarsgaard

the least element of each homset. That sup(�) for some directed � ✓ PInj(X,Y)
is a partial injection follows straightforwardly, and that this dagger structure is
monotone follows by an argument analogous to the one for Rel.

Example 3.5 More generally, any join inverse category (see [17]), of which PInj
is one, is a DCPO-†-category. Inverse categories are canonically dagger categories
enriched in partial orders. That this extends to DCPO-enrichment in the presence
of joins is shown in [5,31]; that the canonical dagger is monotonous with respect to
the partial order is an elementary result (see, e.g., [5, Lemma 2]).

Example 3.6 The category DStoch1 of finite sets and doubly substochastic maps

is an example of a probabilistic DCPO-†-category. A doubly substochastic map

X

f�! Y , where |X| = |Y | = n, is given by an n ⇥ n matrix A = [aij] with non-
negative real entries such that

Pn
i=1 aij  1 and

Pn
j=1 aij  1. Composition is given

by the usual multiplication of matrices.

This is a dagger category with the dagger given by matrix transposition. It is
also enriched in DCPO by ordering doubly substochastic maps entry-wise (i.e.,
A  B if aij  bij for all i, j), with the everywhere-zero matrix as the least element
in each homset, and with suprema of directed sets given by computing suprema
entry-wise. That this dagger structure is monotone follows by the fact that if A  B,
so aij  bij for all i, j, then also aji  bji for all j, i, which is precisely to say that
A

† = A

T  B

T = B

†.

As such, in terms of computational content, these are examples of deterministic,
nondeterministic, and probabilistic DCPO-†-categories. We will also discuss the
related category CP⇤(FHilb), used to model quantum phenomena, in Section 4.

3.1 The category of continuous functionals

We illustrate here the idea of dagger categories as categories enriched in an involutive
monoidal category by an example that will be used throughout the remainder of
this article: Enrichment in a suitable subcategory of DCPO. It is worth stressing,
however, that the construction is not limited to dagger categories enriched in DCPO;
any dagger category will do. As we will see later, however, this canonical involution
turns out to be very useful when DCPO-†-categories are considered.

Let C be a DCPO-†-category. We define an induced (full monoidal) subcategory
of DCPO, call it DcpoOp(C), which enriches C (by its definition) as follows:

Definition 3.7 For a DCPO-†-category C , define DcpoOp(C) to have as objects
all objects ⇥,⇤ of DCPO of the form C (X,Y), C op(X,Y) (for all objects X,Y of
C), 1, and ⇥⇥⇤ (with 1 initial object of DCPO, and �⇥� the cartesian product),
and as morphisms all continuous functions between these.

In other words, DcpoOp(C) is the (full) cartesian subcategory of DCPO
generated by objects used in the enrichment of C , with all continuous maps between
these. That the dagger on C induces an involution on DcpoOp(C) is shown in the
following theorem.

Theorem 3.8 DcpoOp(C) is an involutive symmetric monoidal category.

7

Kaarsgaard

Proof. On objects, define an involution (�) with respect to the cartesian (specif-
ically symmetric monoidal) product of DCPO as follows, for all objects ⇥,⇤,⌃
of DcpoOp(C): C (X,Y) = C op(X,Y), C op(X,Y) = C (X,Y), 1 = 1, and
⇥⇥ ⇤ = ⇥⇥ ⇤. To see that this is well-defined, recall that C ⇠= C op for any dagger
category C , so in particular there is an isomorphism witnessing C (X,Y) ⇠= C op(X,Y)
given by the mapping f 7! f

†. But then C op(X,Y) = {f † | f 2 C (X,Y)}, so if
C (X,Y) = C (X 0

, Y

0) then C (X,Y) = C op(X,Y) = {f † | f 2 C (X,Y)} = {f † | f 2
C (X 0

, Y

0)} = C op(X 0
, Y

0) = C (X 0
, Y

0). That C op(X,Y) = C (X,Y) is well-defined
follows by analogous argument.

On morphisms, we define a family ⇠ of isomorphisms by ⇠I = idI , ⇠C (X,Y) = (�)†,
⇠C op(X,Y) = (�)†, and ⇠⇥⇥⇤ = ⇠⇥ ⇥ ⇠⇤, and then define

⇥
'�! ⇤ = ⇥

⇠�1

⇥��! ⇥
'�! ⇤

⇠
⇤�! ⇤.

This is functorial as id⇥ = ⇠⇥ � id⇥ �⇠�1
⇥ = ⇠⇥ � ⇠�1

⇥ = id⇥, and for ⇥
'�! ⇤

 �! ⌃,

 � ' = ⇠⌃ � � ' � ⇠�1
⇥ = ⇠⌃ � � ⇠�1

⇤ � ⇠⇤ � ' � ⇠�1
⇥ = � '.

Finally, since the involution is straightforwardly a monoidal functor, and since the

natural transformation id) (�) can be chosen to be the identity since all objects of

DcpoOp(C) satisfy ⇥ = ⇥ by definition, this is an involutive symmetric monoidal
category. 2

The resulting category DcpoOp(C) can very naturally be thought of as the
induced category of (continuous) functionals (or second-order functions) of C .

Notice that this is a special case of a more general construction on dagger
categories: For a dagger category C enriched in some category V (which could
simply be Set in the unenriched case), one can construct the category V Op(C),
given on objects by the image of the hom-functor C (�,�) closed under monoidal
products, and on morphisms by all morphisms of V between objects of this form.
Defining the involution as above, V Op(C) can be shown to be involutive monoidal.

Example 3.9 One may question how natural (in a non-technical sense) the choice
of involution on DcpoOp(C) is. One instance where it turns out to be useful is in
the context of dagger adjunctions (see [23] for details), that is, adjunctions between
dagger categories where both functors are dagger functors.

Dagger adjunctions have no specified left and right adjoint, as all such adjunctions
can be shown to be ambidextrous in the following way: Given F a G between

endofunctors on C , there is a natural isomorphism C (FX, Y)
↵X,Y���! C (X,GY).

Since C is a dagger category, we can define a natural isomorphism C (X,FY)
�X,Y���!

C (GX, Y) by f 7! ↵Y,X(f †)†, i.e., by the composition

C (X,FY)
⇠�! C (FY,X)

↵Y,X���! C (Y,GX)
⇠�! C (GX,Y)

which then witnesses G a F (as it is a composition of natural isomorphisms). But
then �X,Y is defined precisely to be ↵Y,X when F and G are endofunctors.

8

Kaarsgaard

3.2 Daggers and fixed points

In this section we consider the morphisms of DcpoOp(C) in some detail, for a
DCPO-†-category C . Since least fixed points of morphisms are such a prominent
and useful feature of DCPO-enriched categories, we ask how these behave with
respect to the dagger. To answer this question, we transplant the notion of a fixed

point adjoint from [5,31] to DCPO-†-categories, where an answer to this question
in relation to the more specific join inverse categories was given:

Definition 3.10 A functional C (Y,X)
'‡�! C (Y,X) is fixed point adjoint to a

functional C (X,Y)
'�! C (X,Y) i↵ (fix')† = fix'‡.

Note that this is symmetric: If '‡ is fixed point adjoint to ' then fix('‡)† =
(fix')†† = fix', so ' is also fixed point adjoint to '‡. As shown in the following
theorem, it turns out that the conjugate ' of a functional ' is precisely fixed point
adjoint to it. This is a generalization of a theorem from [31], where a more ad-hoc
formulation was shown for join inverse categories, which constitute a non-trivial
subclass of DCPO-†-categories.

Theorem 3.11 Every functional is fixed point adjoint to its conjugate.

Proof. The proof applies the exact same construction as in [31], since being a
DCPO-†-category su�ces, and the constructed fixed point adjoint turns out to be the
exact same. Let C (X,Y)

'�! C (X,Y) be a functional. Since ' = ⇠C (X,Y)�'�⇠�1
C (X,Y),

'̄

n =
⇣
⇠C (X,Y) � ' � ⇠�1

C (X,Y)

⌘n
= ⇠C (X,Y) � 'n � ⇠�1

C (X,Y)

and so

fix' = sup{'̄n(?Y,X)}n2! = sup{'n(?†
Y,X)†} = sup{'n(?X,Y)

†}
= sup{'n(?X,Y)}† = (fix')†

as desired. 2

This theorem is somewhat surprising, as the conjugate came out of the involutive
monoidal structure on DcpoOp(C), which is not specifically related to the presence
of fixed points. As previously noted, had C been enriched in another category V ,
we would still be able to construct a category V Op(C) of V -functionals with the
exact same involutive structure.

As regards recursion, this theorem underlines the slogan that reversibility is a

local phenomenon: To construct the inverse to a recursively defined morphism fix',
it su�ces to invert the local morphism ' at each step (which is essentially what is
done by the conjugate ') in order to construct the global inverse (fix')†.

Parametrized functionals and their external fixed points are also interesting
to consider in this setting, as some examples of DCPO-†-categories (e.g., PInj)
fail to have an internal hom. For example, in a dagger category with objects
L(X) corresponding to “lists of X” (usually constructed as the fixed point of a
suitable functor), one could very reasonably construe the usual map-function not

9

Kaarsgaard

as a higher-order function, but as a family of morphisms LX
maphfi����! LY indexed

by X

f�! Y – or, in other words, as a functional C (X,Y)
map��! C (LX,LY). Indeed,

this is how certain higher-order behaviours are mimicked in the reversible functional
programming language Theseus (see also Section 4).

To achieve such parametrized fixed points of functionals, we naturally need
a parametrized fixed point operator on DcpoOp(C) satisfying the appropriate
equations – or, in other words, we need DcpoOp(C) to be an iteration category.
That DcpoOp(C) is such an iteration category follows immediately by its definition
(i.e., sinceDcpoOp(C) is a full subcategory ofDCPO, we can define a parametrized
fixed point operator in DcpoOp(C) to be precisely the one in DCPO), noting that
parametrized fixed points preserve continuity.

Lemma 3.12 DcpoOp(C) is an iteration category.

For functionals of the form C (X,Y) ⇥ C (P,Q)
 �! C (X,Y), we can make a

similar definition of a parametrized fixed point adjoint :

Definition 3.13 A functional C (X,Y) ⇥ C (P,Q)
 ‡�! C (X,Y) is parametrized

fixed point adjoint to a functional C (X,Y)⇥ C (P,Q)
 �! C (X,Y) i↵ (pfix)(p)† =

(pfix ‡)(p†).

We can now show a similar theorem for parametrized fixed points of functionals
and their conjugates:

Theorem 3.14 Every functional is parametrized fixed point adjoint to its conjugate.

Proof. Let C (X,Y)⇥ C (P,Q)
 �! C (X,Y) be a functional. We start by showing

that ̄n(f, p) =

n(f †
, p

†)† for all Y
f�! X, Q

p�! P , and n 2 N, by induction on n.
For n = 0 we have

 ̄

0(f, p) = f = f

†† = (f †)† =

0(f †
, p

†)†.

Assuming now the induction hypothesis for some n, we have

 ̄

n+1(f, p) = ̄(̄n(f, p), p) = ̄(n(f †
, p

†)†, p) = (n(f †
, p

†)††, p†)†

= (n(f †
, p

†), p†)† =

n+1(f †
, p

†)†

Using this fact, we now get

(pfix)(p†) = sup
n2!

{ ̄n(?Y,X , p

†)} = sup
n2!

{ n(?†
Y,X , p

††)†}

= sup
n2!

{ n(?X,Y , p)}† = (pfix)(p)†

which was what we wanted. 2

Again, this theorem highlights the local nature of reversibility, here in the presence
of additional parameters. We observe further the following highly useful property of
parametrized fixed points in DcpoOp(C):

10

Kaarsgaard

Lemma 3.15 Parametrized fixed points in DcpoOp(C) preserve conjugation.

Proof. Let C (X,Y) ⇥ C (P,Q)
 �! C (X,Y) be continuous, and P

p�! Q. Then
pfix (p) = (⇠ � (pfix) � ⇠�1)(p) = (pfix)(p†)† = (pfix)(p)†† = (pfix)(p), so
pfix = pfix . 2

Note that a lemma of this form only makes sense for parametrized fixed points,
as the usual fixed point of a functional C (X,Y)

'�! C (X,Y) results in a morphism

X

fix'��! Y in C , not a functional in DcpoOp(C).

3.3 Naturality and self-conjugacy

We now consider the behaviour of functionals and their parametrized fixed points
when they are natural. For example, given a natural family of functionals

C (FX,FY)
↵X,Y���! C (GX,GY) natural in X and Y (for dagger endofunctors F

and G on C), what does it mean for such a family to be well-behaved with respect to
the dagger on C ? We would certainly want that such a family preserves the dagger,
in the sense that ↵X,Y (f)† = ↵Y,X(f †) in each component X,Y . It turns out that
this, too, can be expressed in terms of conjugation of functionals.

Lemma 3.16 Let C (FX,FY)
↵X,Y���! C (GX,GY) be a family of functionals natural

in X and Y . Then ↵X,Y (f)† = ↵Y,X(f †) for all X
f�! Y i↵ ↵X,Y = ↵Y,X .

Proof. Suppose ↵X,Y (f)† = ↵Y,X(f †). Then ↵X,Y (f) = ↵X,Y (f)†† = ↵Y,X(f †)† =
↵Y,X(f), so ↵X,Y = ↵Y,X . Conversely, assuming ↵X,Y = ↵Y,X we then have for all

X

f�! Y that ↵X,Y (f) = ↵Y,X(f †)†, so ↵X,Y (f)† = ↵Y,X(f †)†† = ↵Y,X(f †). 2

If a natural transformation ↵ satisfies ↵X,Y = ↵Y,X in all components X,Y ,
we say that it is self-conjugate. An important example of a self-conjugate natural
transformation is the dagger trace operator, as detailed in the following example.

Example 3.17 A trace operator [30] on a braided monoidal category D is family
of functionals

D(X ⌦ U, Y ⌦ U)
TrUX,Y����! D(X,Y)

subject to equations such as naturality in X and Y , dinaturality in U , and others.
Traces have been used to model features from traces in tensorial vector spaces [20]
to tail recursion in programming languages [1,9,19], and occur naturally in compact
closed (or, more generally, tortile monoidal) categories [30] and unique decomposition
categories [18,24].

A dagger trace operator on a dagger category (see, e.g., [36]) is precisely a
trace operator on a dagger monoidal category (i.e., a monoidal category where the
monoidal functor is a dagger functor) that satisfies TrUX,Y (f)

† = TrUY,X(f †) in all
components X,Y . Such traces have been used to model reversible tail recursion in
reversible programming languages [28,29,31], and also occur in the dagger compact

closed categories (see, e.g., [37]) used to model quantum computation. In light
of Lemma 3.16, dagger traces are important examples of self-conjugate natural
transformations on dagger categories.

11

Kaarsgaard

Given the connections between (di)naturality and parametric polymorphism [39,6],
one would wish that parametrized fixed points preserve naturality. Luckily, this does
turn out to be the case, as shown in the proof of the following theorem.

Theorem 3.18 If C (FX,FY) ⇥ C (GX,GY)
↵X,Y���! C (FX,FY) is natural in X

and Y , so is its parametrized fixed point.

Proof. Suppose that ↵ is natural in X and Y , i.e., the following diagram commutes
for all X,Y .

C (FX,FY)⇥ C (GX,GY) C (FX,FY)

C (FX

0
, FY

0)⇥ C (GX

0
, GY

0) C (FX

0
, FY

0)

↵X,Y

Ff ⇥Gf � � � Fg ⇥Gg Ff � � � Fg

↵X0,Y 0

Under this assumption, we start by showing naturality of ↵n for all n 2 N, i.e., for
all GX

p�! GY

↵

n
X0,Y 0(?X0,Y 0

, Gf � p �Gg) = Ff � ↵n
X,Y (?X,Y , p) � Fg

by induction on n. For n = 0 we have

↵

0
X0,Y 0(?X,Y , Gf � p �Gg) = ?X0,Y 0

= Ff � ?X,Y � Fg

= Ff � ↵0
X,Y (?X,Y , p) � Fg.

where Ff �?X,Y �Fg = ?X0,Y 0 by strictness of composition. Assuming the induction
hypothesis now for some n, we have

↵

n+1
X0,Y 0(?X0,Y 0

, Gf � p �Gg) = ↵X0,Y 0(↵n
X0,Y 0(?X0,Y 0

, Gf � p �Gg), Gf � p �Gg)

= ↵X0,Y 0(Ff � ↵n
X,Y (?X,Y , p) � Fg,Gf � p �Gg)

= Ff � ↵X,Y (↵
n
X,Y (?X,Y , p), p) � Fg

= Ff � ↵n+1
X,Y (?X,Y , p) � Fg

so ↵n is, indeed, natural for any choice of n 2 N. But then

(pfix↵X0,Y 0)(Gf � p �Gg) = sup
n2!

�
↵

n
X0,Y 0(?X0,Y 0

, Gf � p �Gg)

= sup
n2!

�
↵

n
X0,Y 0(Ff � ?X,Y � Fg,Gf � p �Gg)

= sup
n2!

�
Ff � ↵n

X,Y (?X,Y , p) � Fg

= Ff � sup
n2!

�
↵

n
X,Y (?X,Y , p)

� Fg

= Ff � (pfix↵X,Y)(p) � Fg

so pfix↵X,Y is natural as well. 2

This theorem can be read as stating that, just like reversibility, a recursive
polymorphic map can be obtained from one that is only locally polymorphic. Com-

12

Kaarsgaard

bining this result with Lemma 3.16 regarding self-conjugacy, we obtain the following
corollary.

Corollary 3.19 If C (FX,FY)⇥C (GX,GY)
↵X,Y���! C (FX,FY) is a self-conjugate

natural transformation, so is pfix↵X,Y .

Proof. If ↵X,Y = ↵Y,X for all X,Y then also pfix↵X,Y = pfix↵Y,X , which is further
natural in X and Y by Theorem 3.18. But then pfix↵X,Y = pfix↵X,Y = pfix↵Y,X ,
as parametrized fixed points preserve conjugation. 2

4 Applications and future work

Reversible programming languages

Theseus [29] is a typed reversible functional programming language similar in
syntax and spirit to Haskell. It has support for recursive data types, as well as
reversible tail recursion using so-called typed iteration labels as syntactic sugar for a
dagger trace operator. Theseus is based on the ⇧-family of reversible combinator
calculi [28], which bases itself on dagger traced symmetric monoidal categories
augmented with a certain class of algebraically !-compact functors.

Theseus also supports parametrized functions, that is, families of reversible
functions indexed by reversible functions of a given type, with the proviso that
parameters must be passed to parametrized maps statically. For example, (if one
extended Theseus with polymorphism) the reversible map function would have the
signature map :: (a $ b) ! ([a] $ [b]), and so map is not in itself a reversible
function, though map hfi is (for some suitable function f passed statically). This
gives many of the benefits of higher-order programming, but without the headaches
of higher-order reversible programming.

The presented results show very directly that we can extend Theseus with a fixed
point operator for general recursion while maintaining desirable inversion properties,
rather than making do with the simpler tail recursion. Additionally, the focus on
the continuous functionals of C given by the category DcpoOp(C) also highlights
the feature of parametrized functions in Theseus, and our results go further to show
that even parametrized functions that use general recursion not only have desirable
inversion properties, but also preserve naturality, the latter of which is useful for
extending Theseus with parametric polymorphism.

Quantum programming languages

An interesting possibility as regards quantum programming languages is the
category CP⇤(FHilb) (see [13] for details on the CP⇤-construction), which is dagger
compact closed and equivalent to the category of finite-dimensional C⇤-algebras and
completely positive maps [13]. Since finite-dimensional C⇤-algebras are specifically
von Neumann algebras, it follows (see [10,34]) that this category is enriched in
the category of bounded directed complete partial orders; and since it inherits the
dagger from FHilb (and is locally ordered by the pointwise extension of the Löwner
order restricted to positive operators), the dagger structure is monotone, too. As
such, the presented results ought to apply in this case as well – modulo concerns of
boundedness – though this warrants more careful study.

13

Kaarsgaard

Dagger traces in DCPO-†-categories
Given a suitable monoidal tensor (e.g., one with the zero object as tensor unit)

and a partial additive structure on morphisms, giving the category the structure
of a unique decomposition category [18,24], a trace operator can be constructed by
means of the so-called trace formula

TrUX,Y (f) = f11 +
X

n2!
f21 � fn

22 � f12

where fmn = ⇢m � f � ◆n, with Xn
◆n�!

L
i2I Xi and

L
i2I Xi

⇢m��! Xm are families of
canonical quasi-injections respectively quasi-projections of the monoidal tensor. In
previous work [5,31], the author (among others) demonstrated that a certain class
of DCPO-†-categories, namely join inverse categories, had a dagger trace under
suitably mild assumptions. It is conjectured that this theorem may be generalized to
other DCPO-†-categories that are not necessarily inverse categories, again provided
that certain assumptions are satisfied.

Involutive iteration categories

As it turned out that the category DcpoOp(C) of continuous functionals on
C was both involutive and an iteration category, an immediate question to ask is
how the involution functor ought to interact with parametrized fixed points in the
general case. A remarkable fact of iteration categories is that they are defined to be
cartesian categories that satisfy all equations of parametrized fixed points that hold
in the category CPOm of !-complete partial orders and monotone functions, yet
also have a complete (though infinite) equational axiomatization [16].

We have provided an example of an interaction between parametrized fixed points
and the involution functor here, namely that DcpoOp(C) satisfies pfix = pfix .
It could be interesting to search for examples of involutive iteration categories in the
wild (as candidates for a semantic definition), and to see if Ésik’s axiomatization
could be extended to accomodate for the involution functor in the semantic category.

Algebraic compactness of dagger functors

Another useful feature of categories enriched in domains, as shown independently
by Adámek [4] and Barr [7], is the algebraic compactness of locally continuous
functors, provided that certain (co)completeness requirements are met. Since the
way of the dagger dictates that fixed points of (dagger) functors ought to be unique
up to unitaries (rather than up to any old isomorphism), the entire machinery
of DCPO-categories developed for this purpose needs readjustment in order to
accomodate for this requirement of uniqueness up to unitary maps. This is the topic
of another paper by the author.

5 Conclusion and related work

We have developed a notion of DCPO-categories with a monotone dagger structure
(of which PInj, Rel, and DStoch1 are examples, and CP⇤(FHilb) is closely
related), and shown that these categories can be taken to be enriched in an induced

14

Kaarsgaard

involutive monoidal category of continuous functionals. With this, we were able
to account for (ordinary and parametrized) fixed point adjoints as arising from
conjugation of the functional in the induced involutive monoidal category, to show
that parametrized fixed points preserve conjugation and naturality, and that natural
transformations that preserve the dagger are precisely those that are self-conjugate.
We also described a number of potential applications in connection with reversible
and quantum computing.

A great deal of work has been carried out in recent years on the domain theory of
quantum computing, with noteworthy results in categories of von Neumann algebras
(see, e.g., [34,10,27,11]). Though the interaction between dagger structure and the
domain structure on homsets was not the object of study, Heunen considers the
similarities and di↵erences of FHilb and PInj, also in relation to domain structure
on homsets, in [22], though he also notes that FHilb fails to enrich in domains
as composition is not even monotone (this is not to say that domain theory and
quantum computing do not mix; only that FHilb is the wrong category to consider
for this purpose). Finally, dagger traced symmetric monoidal categories, with the
dagger trace serving as an operator for reversible tail recursion, have been studied in
connection with reversible combinator calculi [28] and functional programming [29].

References

[1] Abramsky, S., Retracing some paths in process algebra, in: U. Montanari and V. Sassone, editors,
CONCUR ’96, Springer, 1996 pp. 1–17.

[2] Abramsky, S. and B. Coecke, A categorical semantics of quantum protocol, in: Logic in Computer
Science, 2004, Proceedings, IEEE, 2004, pp. 415–425.

[3] Abramsky, S. and A. Jung, Domain theory, in: S. Abramsky, D. Gabbay and T. Maibaum, editors,
Handbook of Logic in Computer Science, 3, Clarendon Press, 1994 pp. 1–168.

[4] Adámek, J., Recursive data types in algebraically !-complete categories, Information and Computation
118 (1995), pp. 181–190.

[5] Axelsen, H. B. and R. Kaarsgaard, Join inverse categories as models of reversible recursion, in: B. Jacobs
and C. Löding, editors, FOSSACS 2016, Proceedings (2016), pp. 73–90.

[6] Bainbridge, E. S., P. J. Freyd, A. Scedrov and P. J. Scott, Functorial polymorphism, Theoretical
Computer Science 70 (1990), pp. 35–64.

[7] Barr, M., Algebraically compact functors, Journal of Pure and Applied Algebra 82 (1992), pp. 211–231.

[8] Beggs, E. J. and S. Majid, Bar categories and star operations, Algebras and Representation Theory 12
(2009), pp. 103–152.

[9] Benton, N. and M. Hyland, Traced premonoidal categories, Theoretical Informatics and Applications 37
(2003), pp. 273–299.

[10] Cho, K., “Semantics for a Quantum Programming Language by Operator Algebras,” Master’s thesis,
University of Tokyo (2014).

[11] Cho, K., B. Jacobs, B. Westerbaan and A. Westerbaan, An Introduction to E↵ectus Theory (2015),
arXiv:1512.05813 [cs.LO].

[12] Cockett, J. R. B. and S. Lack, Restriction categories I: Categories of partial maps, Theoretical Computer
Science 270 (2002), pp. 223–259.

[13] Coecke, B., C. Heunen and A. Kissinger, Categories of quantum and classical channels, Quantum
Information Processing 15 (2016), pp. 5179–5209.

[14] Egger, J., Involutive monoidal categories and enriched dagger categories (2008), seminar talk, University
of Oxford, available at https://www.youtube.com/watch?v=75dTIkppk8Q (fetched Mar. 31., 2017).

15

Kaarsgaard

[15] Ésik, Z., Fixed point theory, in: M. Droste, W. Kuich and H. Vogler, editors, Handbook of Weighted
Automata, Springer, 2009 pp. 29–65.

[16] Ésik, Z., Equational properties of fixed point operations in cartesian categories: An overview, in:
G. Italiano, G. Pighizzini and D. Sannella, editors, MFCS 2015, Proceedings, Part I, Springer, 2015 pp.
18–37.

[17] Guo, X., “Products, Joins, Meets, and Ranges in Restriction Categories,” Ph.D. thesis, University of
Calgary (2012).

[18] Haghverdi, E., Unique decomposition categories, Geometry of Interaction and combinatory logic,
Mathematical Structures in Computer Science 10 (2000), pp. 205–230.

[19] Hasegawa, M., Recursion from cyclic sharing: Traced monoidal categories and models of cyclic lambda
calculi, in: P. de Groote and J. R. Hindley, editors, TLCA ’97, Lecture Notes in Computer Science 1210,
Springer, 1997 pp. 196–213.

[20] Hasegawa, M., M. Hofmann and G. Plotkin, Finite dimensional vector spaces are complete for traced
symmetric monoidal categories, in: A. Avron, N. Dershowitz and A. Rabinovich, editors, Pillars of
Computer Science: Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday
(2008), pp. 367–385.

[21] Heunen, C., “Categorical quantum models and logics,” Ph.D. thesis, Radboud University Nijmegen
(2009).

[22] Heunen, C., On the functor `2, in: Computation, Logic, Games, and Quantum Foundations – The Many
Facets of Samson Abramsky, Springer, 2013 pp. 107–121.

[23] Heunen, C. and M. Karvonen, Monads on dagger categories, Theory and Applications of Categories 31
(2016), pp. 1016–1043.

[24] Hoshino, N., A representation theorem for unique decomposition categories, Electronic Notes in
Theoretical Computer Science 286 (2012), pp. 213–227.

[25] Hyland, M., Abstract and concrete models for recursion, in: O. Grumberg, T. Nipkow and C. Pfaller,
editors, Proceedings of the NATO Advanced Study Institute on Formal Logical Methods for System
Security and Correctness (2008), pp. 175–198.

[26] Jacobs, B., Involutive categories and monoids, with a GNS-correspondence, Foundations of Physics 42
(2012), pp. 874–895.

[27] Jacobs, B., New directions in categorical logic, for classical, probabilistic and quantum logic, Logical
Methods in Computer Science 11 (2015), pp. 1–76.

[28] James, R. P. and A. Sabry, Information e↵ects, in: POPL 2012, Proceedings (2012), pp. 73–84.

[29] James, R. P. and A. Sabry, Theseus: A high level language for reversible computing (2014), work-in-
progress report at RC 2014, available at https://www.cs.indiana.edu/~sabry/papers/theseus.pdf.

[30] Joyal, A., R. Street and D. Verity, Traced monoidal categories, Mathematical Proceedings of the
Cambridge Philosophical Society 119 (1996), pp. 447–468.

[31] Kaarsgaard, R., H. B. Axelsen and R. Glück, Join inverse categories and reversible recursion, Journal
of Logical and Algebraic Methods in Programming 87 (2017), pp. 33–50.

[32] Kastl, J., Inverse categories, in: H.-J. Hoehnke, editor, Algebraische Modelle, Kategorien und Gruppoide,
Studien zur Algebra und ihre Anwendungen 7, Akademie-Verlag, 1979 pp. 51–60.

[33] Kelly, G. M., “Basic Concepts of Enriched Category Theory,” London Mathematical Society Lecture
Note Series 64, Cambridge University Press, 1982.

[34] Rennela, M., Towards a quantum domain theory: Order-enrichment and fixpoints in W*-algebras,
Electronic Notes in Theoretical Computer Science 308 (2014), pp. 289–307.

[35] Selinger, P., Dagger compact closed categories and completely positive maps, Electronic Notes in
Theoretical Computer Science 170 (2007), pp. 139–163.

[36] Selinger, P., A survey of graphical languages for monoidal categories, in: B. Coecke, editor, New
Structures for Physics, Springer, 2011 pp. 289–355.

[37] Selinger, P., Finite dimensional Hilbert spaces are complete for dagger compact closed categories, Logical
Methods in Computer Science 8 (2012), pp. 1–12.

[38] Smyth, M. B. and G. D. Plotkin, The category-theoretic solution of recursive domain equations, SIAM
Journal on Computing 11 (1982), pp. 761–783.

[39] Wadler, P., Theorems for free!, in: Proceedings of the Fourth International Conference on Functional
Programming Languages and Computer Architecture, FPCA ’89 (1989), pp. 347–359.

16

A family of graded epistemic logics

Mario R. F. Benevides

2,3

PESC/COPPE - Inst. de Matemática — Universidade Federal do Rio de Janeiro

Alexandre Madeira

1,4

HASLab INESC TEC, U. Minho & CIDMA, U. Aveiro, Portugal

Manuel A. Martins

1,5

CIDMA, Dep. Mathematics, U. Aveiro, Portugal

Abstract

Multi-Agent Epistemic Logic has been investigated in Computer Science [5] to represent and reason about
agents or groups of agents knowledge and beliefs. Some extensions aimed to reasoning about knowledge
and probabilities [4] and also with a fuzzy semantics have been proposed [6,13].
This paper introduces a parametric method to build graded epistemic logics inspired in the systematic
method to build Multi-valued Dynamic Logics introduced in [11,12]. The parameter in both methods is the
same: an action lattice [9]. This algebraic structure supports a generic space of agent knowledge operators,
as choice, composition and closure (as a Kleene algebra), but also a proper truth space for possible non
bivalent interpretation of the assertions (as a residuated lattice).

Keywords: Epistemic Logic, Action Lattice, Modal Logics

1 Introduction

The analysis and the applications of concepts such as agent’s knowledge, every-
body’s knowledge and common knowledge became a stimulating research field, par-
ticularly in the last decades, when epistemic logics emerged. Although, the work of
Hintikka [8] can be considered the founder of modern modal epistemic logic, most

1 This work is supported by ERDF European Regional Development Fund, through the COMPETE Pro-
gramme, and by National Funds through FCT - Portuguese Foundation for Science and Technology - within
projects POCI-01-0145-FEDER-016692 and UID/MAT/04106/2013. A. Madeira is also supported by the FCT
individual grant SFRH/BPD/103004/2014
2 This work is supported by the Brazilian research agencies CNPq, FAPERJ and CAPES.
3 Email: mario@cos.ufrj.br
4 Email: amadeira@inesctec.pt
5 Email: martins@ua.pt

Benevides, Madeira and Martins

of these logics are heavily influenced by the work of Halpern et al [5] on modal
logics of knowledge in a multi-agent systems framework. Modal logics of knowledge
describe how an agent reasons about his own knowledge and about the knowledge
of other agents. We say that an agent knows a fact ' if ' is true in every state
that the agent considers possible. “The intuition is that if an agent does not have
complete knowledge about the world, he will consider a number of possible worlds.
These are his candidates for the way the world actually is” [5].

Much of the agreement and cooperation in a group of agents is reached con-
sidering the interaction among the agents and the increasing group knowledge ac-
quisition. A fact ' is mutual knowledge in a group of agents, if each agent knows
'. This group knowledge is also known as everybody’s knowledge. Suppose, for
instance, that each participant in a conference knows that the lecturer will arrive
late. The fact that the lecturer will arrive late is mutual knowledge among the
participants, but each participant may think that he is the only one who knows
about that. However, suppose that one of the participants makes an announcement
for the audience: “The lecturer told me that he will arrive late”. From this mo-
ment onwards, each participant knows that each participant knows that the lecturer
will arrive late, and each participant knows that each participant knows that each
participant knows that the lecturer will arrive late, and so on. The participant’s
statement turned the fact that was mutually known into a common knowledge fact.

There are many situations where we have uncertainty in our knowledge and
beliefs. It is not unusual to believe in some fact with some grade of possibility. For
instance, Anne believes that her father has a strong preference for Bob, which means

that she believes that he will give a sweet to Bob rather than to Clara. In a scale

from 0 to 5, her belief is 4. This kind of belief is not true or false. In this work we
deal with graded knowledge, but atomic propositions are true or false.

In [5] Multi-Agent Epistemic Logics has been investigated, to represent and rea-
son about agents or groups of agents knowledge and beliefs. There are many pro-
posals to extend these logics with uncertainty. Some extensions aimed to reasoning
about knowledge and probabilities [4]. In general, this is accomplished extending
the language with weighted formulas and adding probabilities to the semantics.
There are other attempts that provide a fuzzy or many valued semantics [6,13].
This work goes in the later direction.

The work of Fitting [6] proposes a many valued modal logic where the truth
values are taken from a lattice.It is presented two semantics, one where the atomic
propositions are many valued and a second one where the accessibility relation also
is many valued. Also, in [3], it is presented a many-valued modal logic over a finite
residuated lattice. In [13] it is introduced an epistemic logic based on the work of
Fitting. It di↵ers from ours because they work with a particular lattice. Another
related work that uses a complete, distributive lattices as semantics for epistemic
and doxastic logics is presented in [7]. More recently, some interesting works have
appeared to deal with many valued dynamic epistemic logic [16,10].

In [11,12] it is proposed a method to build Multi-valued Dynamic Logics. In-
spired on this method, we introduce a method to build graded Multi-Agent Epis-
temic logics. Both methods are based on Action Lattices [9]. Using action lattices,
we are able to support a generic space of agent knowledge operators, as choice,

2

Benevides, Madeira and Martins

composition and closure (as a Kleene algebra), but also a proper truth space for
possible non bivalent interpretation of the assertions (as a residuated lattice). We
use matricial algebra to be able to introduce knowledge representations as weighted
graphs, which enables us to capture a wide class of weighted scenarios, from the
classic bivalent perspective of knowledge, to other structured, discrete and continu-
ous, domains. It should be notice that, in this work, we only deal with the epistemic
notions of knowledge and their duals.

This paper is organized as follows. Section 2 presents all the background needed
about multi-agent epistemic logic. Section 3, introduces our method for building
graded Multi-Agent Epistemic logics. It also provides some concepts on Kleene
algebras and action lattices. Section 4 illustrates the use of our method with two
examples. Section 5 discusses some conditions where classical axioms of Multi-Agent
Epistemic Logic are valid and points out some future works.

2 Multi-Agent Epistemic Logic

Multi-agent epistemic logic has been investigated in Computer Science [5] to repre-
sent and reason about agents or groups of agents knowledge and beliefs.

2.0.1 Language and Semantics

Definition 2.1 The epistemic language consists of a set � of countably many

proposition symbols, a finite set A of agents, the boolean connectives ¬ and ^,
a modality K

a

for each agent a. The formulas are defined as follows:

' ::= p | > | ¬' | '1 ^ '2 | Ka

' | C
G

'

where p 2 �, a 2 A and G ✓ A.

The standard connectives can be presented as abbreviations, namely ? ⌘ ¬>,
' _ � ⌘ ¬(¬' ^ ¬�), '! � ⌘ ¬(' ^ ¬�) and E

G

' ⌘
V

a2GK
a

'.

The intuitive meaning of the modal formulas are:

• K
a

' - agent a knows ';

• E
G

' - every agent a 2 G knows ';

• C
G

' - it is common knowledge among all members of group G that it is the case
that '.

We also introduce, by definition, the dual operators B' ⌘ ¬K¬' and M
G

' ⌘
¬E

G

¬'.

Definition 2.2 A multi-agent epistemic frame is a tuple F = (W,R
a

) where

• W is a non-empty set of states;

• R
a

is a binary relation over W , for each agent a 2 A;

We also define the following relations

• R
G

=
S

a2GR
a

• R⇤
G

= (R
G

)⇤, where (R
G

)⇤ is the reflexive, transitive closure of R
G

.

3

Benevides, Madeira and Martins

Definition 2.3 A multi-agent model is a pair M = (F ,V), where F is a frame

and V is a valuation function V : � ! 2W .

In most applications of multi-agent epistemic logic the relations R
a

are equiv-
alence relations. In this case, models are called epistemic models and, in these
structures, if G is not the empty group of agents, R⇤

G

coincides with R+
G

, for R+
G

being the transitive closure of R
G

.

Definition 2.4 Given a multi-agent model M = hS,R
a

, V i. The notion of satis-

faction M, s |= ' is defined as follows

• M, s |= p i↵ s 2 V (p)

• M, s |= ¬� i↵ M, s 6|= �

• M, s |= � ^ i↵ M, s |= � and M, s |=

• M, s |= K
a

� i↵ for all s0 2 S : sR
a

s0) M, s0 |= �

• M, s |= C
G

� i↵ for all s0 2 S : sR⇤
G

s0) M, s0 |= �

It is easy to see that M, s |= E
G

� i↵ for all s0 2 S : sR
G

s0) M, s0 |= �.

Example 1 (An adaptation from [17]) Suppose a father has three envelopes,

each containing: 0, 1 and 2 dollars inside respectively.The father has three children:

anne, bob and clara. Each child receives one envelope and do not know content of

the envelopes of the other children.

We use proposition symbols 0
x

, 1
x

, 2
x

for x 2 {a, b, c} meaning “child x has

envelope 0, 1 or 2. We name each state by the envelope that each child has in that

state, for instance 012 is the state where child a has 0, child b has 1 and child c has

2. A state name underlined means current state. The following epistemic model

represents the epistemic state of each agent 6 .
Hexa = hS,R

a

, R
b

, R
c

, V i:
• S = {012, 021, 102, 120, 201, 210}
• R

a

=
{(012, 012), (012, 021), (021, 021), . . . },
...

• V (0
a

) = {012, 021}, V (1
a

) =
{102, 120}, ...

012 a

c

b

021

c

b

102 a

b

120

c

201 a 210

It is not di�cult to see that 012 |= B
b

0
a

and 012 |= B
a

K
c

2
c

hold, but

021 |= E
ac

2
b

does not hold.

3 Parametric construction of Graded Epistemic Logics

We introduce, in this paper, a parametric method to build graded epistemic logics
inspired in the systematic method to build multi-valued dynamic logics introduced
in [11,12]. Both methods are based in the same parameter: an action lattice [9].

6 We omit the reflexive loops in the picture

4

Benevides, Madeira and Martins

3.1 Kleene algebras, action lattices and graded knowledges representation

Action lattices support a generic space of agent knowledge operators, as choice, com-
position and closure (as a Kleene algebra), but also a proper truth space for possible
non bivalent interpretation of the assertions (as a residuated lattice). Observe that
the original motivations of Kozen to introduce Action Lattices were very di↵erent
for these ones. Originally, the residues were introduced within Action Algebra [15]
as a necessary technicality to obtain a finitely-based equational variety to reason
about imperative programs. Then, Kozen adjusted this notion into the Action Lat-

tice in [9] by introducing and axiomatizing a meet operation, in order to recover
the closeness by matricial formation of the Kleene Algebras [2]. We overview, in
the following, the action algebra with some relevant examples in the context of our
purpose. A lot of other examples and properties can be found in [11]. The structure
of Kleene algebra will be used to model the set of agent knowledge operators over
a set of agents A. In our setting, the valuations of propositions are crisp, i.e., true
or false. This forces the integrability on the action lattices adopted.

a+ (b+ c) = (a+ b) + c (1)

a+ b= b+ a (2)

a+ a= a (3)

a+ 0= 0 + a = a (4)

a; (b; c) = (a; b); c (5)

a; 1 = 1; a = a (6)

a; (b+ c) = (a; b) + (a; c) (7)

(a+ b); c= (a; c) + (b; c) (8)

a; 0 = 0; a = 0 (9)

1 + a+ (a⇤; a⇤) a⇤ (10)

a;x  x) a⇤;x  x (11)

x; a  x) x; a⇤  x (12)

a;x  b, x  a ! b (13)

a ! b  a ! (b+ c) (14)

(x ! x)⇤ = x ! x (15)

a · (b · c) = (a · b) · c (16)

a · b = b · a (17)

a · a = a (18)

a+ (a · b) = a (19)

a · (a+ b) = a (20)

Fig. 1. Axiomatisation of action lattices (from [9])

Definition 3.1 (Kleene Algebra) A Kleene algebra is an idempotent (and thus

partially ordered) semiring endowed with a closure operator ⇤, i.e. it consists of a

tuple (A,+, ; , 0, 1, ⇤) where A is a set, + and ; are binary operations, ⇤ is an unary

operation and 0, 1 are constants satisfying the axioms (1)–(12) (the relation  is

the natural order induced by the operation +: a  b i↵ a+ b = b).

Note that (4) implies that 0 is the minimum element in any Kleene algebra. Conway
shown in [2] that we can endow the class of all matrices over a Kleene algebra
with a Kleene structure. We recall this procedure here: given a Kleene algebra
A = (A,+, ; , 0, 1, ⇤) we define a Kleene algebra M

n

(A) = (M
n

(A),+, ;,0,1,*) as
follows:

(i) M
n

(A) is the space of (n⇥ n)-matrices over A

(ii) for any A,B 2 M
n

(A), define M = A+B by M
ij

= A
ij

+B
ij

, i, j  n.

(iii) for any A,B 2 M
n

(A), define M = A ; B by M
ij

=
P

n

k=1(Aik

;B
kj

) for any
i, j  n.

5

Benevides, Madeira and Martins

(iv) 1 and 0 are the (n⇥ n)-matrices defined by 1

ij

=

(
1 if i = j

0 otherwise
and 0

ij

= 0,

for any i, j  n.

(v) for any M = [a] 2 M1(A), M* = [a⇤]; for any M =

2

4A B

C D

3

5 2 M
n

(A), n > 1,

where A and D are square matrices, define

M* =

2

4F * F *
;B ;D*

D⇤;C;F ⇤ D*
+(D*

;C ;F *
;B ;D*)

3

5

where F = A + B ;D*
;C. Note that this construction is recursively defined

from the base case (n = 2) where the operations of the base action lattice A

are used.

In the present work we take advantage of this matricial algebra to be able to
operate knowledge representations as weighted graphs or, more precisely, weighted
labelled transition systems. As we will see, this abstract structure capture a wide
class of weighted scenarios, from the classic bivalent perspective of knowledge, to
other structured, discrete and continuous, domains.

Moreover, as stated, we are interesting in the definition of Graded Epistemic
logics with non necessarily boolean degrees of truth. In this view, in order to be able
to interpret other logical connectives, we extend our Kleene Algebra of knowledge
with some additional structure - namely, with a residue for the interpretation of the
logical implication and an infimum to interpret the logical conjunction. This can
be found in the following notion of Action Lattice introduced by D. Kozen in [9].
Note, however, that the seminal motivation for this definition was quite distinct
of the stated one. In particular, it aimed to adjust the finitely-based equational
variety “Action Algebra” of Pratt [15], to an algebra closed under the matricial
constructions. Let us recall this notion:

Definition 3.2 A action lattice is a tuple A = (A,+, ; , 0, 1, ⇤,!, ·), where A is a

set, 0 and 1 are constants, ⇤ is an unary operation in A and +, ; ,! and · are binary

operations in A satisfying the axioms enumerated in Figure 5, where the relation 
is induced by +: a  b i↵ a+ b = b. An integral action lattice consists of an action

lattice satisfying a  1.

Beyond the bivalent {0, 1}-action lattice we consider the following two action
lattice that will be used to illustrate our method in Section 4. More examples and
properties of action lattices can be found in [11].

Definition 3.3 (L - the Lukasiewicz arithmetic lattice) The Lukasiewicz
arithmetic lattice is the structure L = ([0, 1],max,�, 0, 1, ⇤, ! , min), where

• x ! y = min(1, 1� x+ y),

• x� y = max(0, y + x� 1) and

• x⇤ = 1.

6

Benevides, Madeira and Martins

Definition 3.4 (W

k

finite Wajsberg hoops) We consider now an action lat-

tice endowing the finite Wajsberg hoops [1] with a suitable star operation. Hence,

for a fix natural k > 0 and a generator a, we define the structure W

k

=
(W

k

,+ , ; , 0, 1, ⇤,!, ·), where W
k

= {a0, a1, · · · , ak}, 1 = a0 and 0 = ak, and for

any m,n  k,

• am + an = amin{m,n}

• am; an = amin{m+n,k}

• (am)⇤ = a0

• am ! an = amax{n�m,0}

• am · an = amax{m,n}

3.2 A method to build Graded Epistemic Logic

In this section we introduce a method to build multi-agent epistemic logics parame-
terized by an action lattice. The “on-demand grading” of the logic is only reflected
in its semantics; the syntax is the same as in the standard case. The proposition
assignment is crisp and only the agent’s relations are graded on the underlying ac-
tion lattice. This non orthodox feature is naturally expressed on the definition of
satisfaction.

Let us fix a complete action lattice A = (A,+, ; , 0, 1, ⇤,!, ·). We introduce, in
the following, a method to generate an A-graded epistemic logic GE(A):

• Signatures (At,Ag) where At is a set of atomic propositions and Ag is a finite set
of agents.

• Sentences are the standard sentences of Multi-Agent Epistemic Logic:

' ::= p | ? | ' ^ ' | ' _ ' | '! ' | K
a

' | B
a

' | E
G

' | M
G

' | C
G

'

where p 2 At, a 2 Ag, G ✓ Ag. Note that, here we are explicitly considering
the or connective and the dual operators of the ones introduced in Definition 2.1
. Actually, here these operators are not definable because we do not have, in
general, a negation.

• Models are structures (W,R, V) where W is a non empty set of states, with
cardinality n; R is an Ag-family of (n⇥ n)-matrices of M(A) and V : At⇥W !
{0, 1} is a valuation function. We use the notation R

a

(w,w0) to denote the cell
(w,w0) of the matrix R

a

.

• Satisfaction:
· (w |= ?) = 0
· (w |= p) = V (p, w), for any p 2 At
· (w |= ' ^ '0) = (w |= ') · (w |= '0)
· (w |= ⇢ _ ⇢0) = (w |= ⇢) + (w |= ⇢0)
· (w |= '! '0) = (w |= ') ! (w |= '0)
· (w |= K

a

') =
V

w

02W
�
R

a

(w,w0) ! (w0 |= ')
�

· (w |= B
a

') =
W

w

02W
�
R

a

(w,w0); (w0 |= ')
�

· (w |= E
G

') =
V

w

02W
�
R

G

(w,w0) ! (w0 |= ')
�

· (w |= M
G

') =
W

w

02W
�
R

G

(w,w0); (w0 |= ')
�

· (w |= C
G

') =
V

w

02W
�
R⇤

G

(w,w0) ! (w0 |= ')
�

for R
G

=
P

a2GR
a

7

Benevides, Madeira and Martins

4 Examples

We have already discussed an example of epistemic logic in the background section.
Such example can be seen as an instantiation of our method over the {0, 1} standard
action lattice (see [11]). We present two more examples, namely one that deals with
discrete degrees of knowledge and, on the same context, another one that admits
knowledge ranging over a continuous scale.

Example 2 Consider here the Graded Epistemic Logic generated by the Wajsberg

hoop W5 over {a0, a1, a2, a3, a4, a5} (Definition 3.4). Recall that the order in W5

is a5 < a4 < a3 < a2 < a1 < a0. In order to simplify the example, we denote ak by

5� k, for k = 0, . . . , 5. This logic is useful to reasoning about the following variant

of Example 2.

Suppose now that the children are jealous and they have the following beliefs:

(i) anne believes that the father has a strong preference for bob, which means that

she believes that he will give the envelop with higher value to bob than to clara.

In a scale from 0 to 5, her belief is 4; Conversely, her belief that the envelop

bob received has a smaller value is 1.

(ii) clara also believes that the father has a preference for bob . In a scale from

0 to 5, her belief is 3; and conversely, her belief that the envelop bob received

has a smaller value is 1. But if she has the envelop 2 then she believes that the

father has no preference between anne and bob; in that case her belief is 4.

(iii) bob does not believe that the father has any preference between anne and clara.

So his belief is 3 indi↵erently about any situation.

The following draws represent the beliefs of anna, bob and clara. We draw it

separately for clarity sake. Moreover, we omit the reflexive loops in the picture with

value 5.

012

4

021

1
^^

102
4

((
120

1
hh

201
4

210

1

^^

012

3

021
3

102
3

120

201 210

012

4

021

1

vv

102 120

1
nn201

3

66

210

4
00

Fig. 2. anna’s, bob’s and clara’s beliefs

We evaluate some formulas in this model. In order to simplify the calculations

we use the fact that a5 ! x = a0(i.e., 0 ! x = 5) and a5;x = a5 (i.e., 0;x = 0).

8

Benevides, Madeira and Martins

012 |= Bb0a =
W�

Rb(012, 012); 012 |= 0a, Rb(012, 210); 210 |= 0a

=
W
{5; 5, 3; 0} = 5

012 |= BaKc2a =
W�

Ra(012, 012); 012 |= Kc2a, Ra(012, 021); 021 |= Kc2a

=
W�

5;
V�

Rc(012, 012) ! 012 |= 2a, Rc(012, 102) ! 102 |= 2a

,

4;
V�

Rc(021, 021) ! 021 |= 2a, Rc(021, 201) ! 201 |= 2a

=
W�

5;
V�

5 ! 0, 4 ! 0

, 4;

V�
5 ! 0, 1 ! 5

=
W�

a

0;
V�

a

0 ! a

5
, a

1 ! a

5

, a

1;
V�

a

0 ! a

5
, a

4 ! a

0

=
W�

a

0; a5, a1; a5

= a

5(= 0)

To calculate M
ac

2
b

at 021 we first calculate the matrix of R
ac

= R
a

+R
c

.

Rac =

012 021 102 120 201 210

012 5 4 4 0 0 0

021 1 5 0 0 1 0

102 4 0 5 4 0 0

120 0 0 1 5 0 1

201 0 0 0 4 5 4

210 0 0 0 4 1 5

Then we have,
021 |= Mac2b =

W�
Rac(021, 012); 012 |= 2b, Rac(021, 021); 021 |= 2b,

Rac(021, 201); 201 |= 2b

=
W
{1; 5, 5; 5, 1; 0} = 5

If we consider the group knowledge we have

021 |= Eac2b =
V�

Rac(021, 012) ! 012 |= 2b, Rac(021, 021) ! 021 |= 2b,

Rac(021, 201) ! 201 |= 2b

=
V
{1 ! 5, 5 ! 5, 1 ! 0} =

V
{5, 5, 1} = 5

Example 3 Consider now the Graded Epistemic Logic generated by the Lukasie-

wicz arithmetic lattice L = ([0, 1],max,�, 0, 1, ⇤, ! , min) (Definition 3.3). This

logic is adequate to reasoning about knowledge expressed in the continuous scale

[0, 1]. Let us look to the following variant of Example 2.

Suppose now that the children have the following beliefs:

(i) anne believes that the father has a strong preference for bob, which means that

she believes that he will give the envelop with higher value to bob than to clara.

Her belief is 4
5 ; moreover her belief that the value is less is 1

5

(ii) cath also believes that the father has a preference for bob. Her belief is 3
5 .

But if she has the envelop 2 then she believes that the father has no preference

between anne and bob.In such case her belief is 1.

(iii) bob does not believe that the father has any preference between anne and clara.

So, his beliefs are all 1.

The draws in figure 3 represent the beliefs of anna, bob and clara. We draw it

separately for clarity sake.

We will evaluate the same formulas as in previous example:

012 |= Bb0a =
W�

Rb(012, 012)� 012 |= 0a, Rb(012, 210)� 210 |= 0a

=
W
{1� 1, 1� 0} = 1

012 |= BaKc2a =
W�

Ra(012, 012)� 012 |= Kc2a, Ra(012, 021)� 021 |= Kc2a

=
W�

1�
V�

Rc(012, 012) ! 012 |= 2a, Rc(012, 102) ! 102 |= 2a

,

4
5 �

V�
Rc(021, 021) ! 021 |= 2a, Rc(021, 201) ! 201 |= 2a

=
W�

1�
V�

1 ! 0, 1 ! 0

,

4
5 �

V�
1 ! 0, 2

5 ! 1

=
W�

1�
V�

0, 0

,

4
5 �

V�
0, 1

=
W�

1� 0, 4
5 � 0

=
W�

0, 0} = 0

9

Benevides, Madeira and Martins

012

1
5

��

4
5

⌧⌧
021

1
5

\\

4
5

⇤⇤

102

1
5

��
4
5 ''

120

4
5

⇤⇤

1
5

gg

201

1
5
�� 4

5 ⌧⌧
210

1
5

\\

4
5
⇤⇤

012

1

021

1

102

1

120

201 210

012

1

021̂̂
��

2
5

ww

3
5\\

102 120

2
5

nn

��
3
5[[

2
5

⌧⌧
201^^

3
5

77

210

3
5

00

%%
2
5__

Fig. 3. anna’s, bob’s and clara’s beliefs

To calculate M
ac

2
b

at 021 we first calculate the matrix of R
ac

= R
a

+R
c

.

Rac =

012 021 102 120 201 210

012 1 4
5 1 0 0 0

021 1
5

4
5 0 0 2

5 0

102 1 0 1 4
5 0 0

120 0 0 1
5

4
5 0 3

5

201 0 3
5 0 0 2

5
4
5

210 0 0 0 3
5 1 4

5

Then we have,
021 |= Mac2b =

W�
Rac(021, 012)� 012 |= 2b, Rac(021, 021)� 021 |= 2b,

Rac(021, 201)� 201 |= 2b

=
W
{ 1
5 � 1, 4

5 � 1, 2
5 � 0} =

W
{ 1
5 ,

4
5 , 0} = 4

5

If we consider the group knowledge we have
021 |= Eac2b =

V�
Rac(021, 012) ! 012 |= 2b, Rac(021, 021) ! 021 |= 2b,

Rac(021, 201) ! 201 |= 2b

=
V
{ 1
5 ! 1, 4

5 ! 1, 2
5 ! 0} =

V
{1, 1, 3

5} = 3
5

5 How epistemic GE(A) logics are?

The study of each one of these instantiation of the logics generated in the previ-
ous section, as logics with ‘its own rights’, is very challenging. Obviously, there
are aspects that have to be studied instantiation-by-instantiation. In this section,
however we approach this in a more systematic perspective, trying to respond the
question How epistemic GE(A) logics are? by studying the validity of the standard
axioms of epistemic logic in Fig 5 on the generated logics.

We obtain some generic results for specific classes of generated logics, with re-
spect to specific classes of action lattices and imposing constrains on the achieved
models. The latter also happens in the standard epistemic logic, which the com-
pleteness is established for a restricted class of models, for instance, the epistemic
ones (i.e., models whose accessible relations are equivalence relations) [17].

10

Benevides, Madeira and Martins

(i) All instantiations of propositional tautologies,

(ii) K
a

('!) ! (K
a

'! K
a

),

(iii) K
a

'! ',

(iv) K
a

'! K
a

K
a

' (+ introspection),

(v) ¬K
a

'! K
a

¬K
a

' (� introspection),

(vi) C
G

'$ E
G

C
G

'

(vii) C
G

('! E
G

') ! ('! C
G

')

Fig. 4. Axiomatics of epistemic logic [5,17]

We follow the strategy adopted in [11,12] (in the context of generated graded
dynamic logics). The integrability (a  1) on action lattices provides a nice proof
strategy to work at this generic level: as it is well known, in any integral action
lattice, we have

(a ! b) = 1 , a  b (21)

Theorem 5.1 Let A be an integral ;-idempotent, ;-commutative action lattice. The

property

(ii) K
a

('!) ! (K
a

'! K
a

)

is valid in the logic GE(A).

Proof. This proof can be extracted from Lemma 9 of [11]. 2

In a similar way, but by imposing commutativity on the operation ; we can
extract the proof for the axiom (vii):

Theorem 5.2 Let A be an integral action lattice such that ; = ·. Then the property

(vii) C
G

('! E
G

') ! ('! C
G

')

is valid in the logic GE(A).

Proof. This can be directly adapted from Lemma 10 of [11]. 2

So, we have to study the remaining axioms, specifically the ones that distinguish
epistemic logic from other modal logics - the axioms (iii), (iv), (v) and (vi). In this
view, we have to impose further properties on the structure of the models. In
particular, we have to generalize the reflexivity and transitivity conditions for our
graded setting to guarantee the validity of (iii) and (iv). What the conditions needed
for the cases (iii) and (iv) are still in study.

Definition 5.3 Let A be an action lattice and M be a model in GE(A). We say
that M is graded-reflexive if for any a 2 Ag, w 2 W ,

R
a

(w,w) = 1 (22)

and that it is graded-transitive, whenever any a 2 Ag

for any w,w0, w00 2 W,R
a

(w,w00) � R
a

(w,w0) ; R
a

(w0, w00) (23)

Theorem 5.4 Let A be an integral action lattice. Then, the axiom

11

Benevides, Madeira and Martins

(iii) K
a

'! ',

is valid in graded-reflexive models.

Proof. Since A is integral, we have by (21) that it is su�cient to prove that, for
any model M , and for any state w 2 W , (w |= K

a

')  (w |= '). In this view, we
observe that:

(w |= K
a

')

= { |= defn}
^

w

02W

�
R

a

(w,w0) ! (w0 |= ')
�

 { infimum properties}
�
R

a

(w,w) ! (w |= ')
�

= { (22)}
�
1 ! (w |= ')

�

= { in any action lattice 1 ! a = a (cf. [11])}

(w |= ')

2

Theorem 5.5 Let A be an integral ;-commutative action lattice. Then, the axiom

(iv) K
a

'! K
a

K
a

' (+ introspection),

is valid in graded-transitive models.

Proof. Since A is integral, we have by (21) that it is su�cient to prove that, for
any model M , and for any state w 2 W , (w |= K

a

')  (w |= K
a

K
a

'). In this view,
we observe that:

for any w0, w00 2 W,R
a

(w,w00) � R
a

(w,w0);R
a

(w0, w00)

, { ;-commutative}

for any w0, w00 2 W, R
a

(w,w00) � R
a

(w0, w00);R
a

(w,w0)

, { a  b) b ! c  a ! c (cf. [11])}

for any w0, w00 2 W, R
a

(w,w00) ! (w00 |= ') 
(R

a

(w0, w00);R
a

(w,w0)) ! (w00 |= ')

, { infimum properties}

for any w00 2 W,R
a

(w,w00) ! (w00 |= ') 
^

w

02W

�
(R

a

(w0, w00);R
a

(w,w0)) ! (w00 |= ')
�

, { in any action lattice a ! (b ! c) = (b; a) ! c (cf. [11])}

for any w00, R
a

(w,w00) ! (w00 |= ') 

12

Benevides, Madeira and Martins

^

w

02W

�
R

a

(w,w0) ! (R
a

(w0, w00) ! (w00 |= '))
�

, { inf. monotocity}
^

w

002W
R

a

(w,w00) ! (w00 |= ') 

^

w

0
,w

002W

�
R

a

(w,w0) ! (R
a

(w0, w00) ! (w00 |= '))
�

, { in any complete action lattice, x ! (
V

i2I yi) =
V

i2I(x ! yi) (cf. [11])}
^

w

002W
R

a

(w,w00) ! (w00 |= ') 

^

w

02W

�
R

a

(w,w0) !
^

w

002W
(R

a

(w0, w00) ! (w00 |= '))
�

, { |= defn twice}

(w |= K
a

')  (w |= K
a

K
a

')

2

6 Conclusions and future work

This paper starts with a research program on the parametric generation of graded
epistemic logics. The approach is based on the application of the method introduced
in Section 3, and should be explored as an e↵ective source of logics to reason on agent
knowledge scenarios with distinct degrees of Knowledge/Belief. The generality of
the method was illustrated with three graded epistemic logics (note that the stan-
dard multi-agent epistemic logic corresponds to the instantiation of the action lattice
2), but a lot of other examples can be considered - from a {false, unknown, true}-
three valued epistemic logic, achieved by instantiating the action lattice 3 to a more
‘esoteric’ graded epistemic logic to deal with knowledge/belief scenarios involving
resource aware constraints (built on the Floyd Warshall algebra - see [11]). Beyond
of their philosophical interest, the study of each one of these instantiations as a
logic with ‘its own rights’ is very challenging. Indeed, as discussed in Section 5,
it is possible to characterize specific classes of graded epistemic logics (parametric
on specific subclasses of action lattices and by imposing further condition on the
models) that preserves the essence of the bivalent epistemic logic.

There is, however, a lot of work to do in this line of research. To establish su�-
cient conditions for validating the negative introspection axiom (and of (vi)) is still
work in progress for us. It seems that, beyond of a generalization of the Euclidean
property on models, some new conditions should be imposed in the action lattices,
particularly with respect to their negation (note that, in its generic form, there is
no negation involution in general). The parametric generation of calculus and the
study of complexity of generated epistemic logic w.r.t. to specific classes of action
lattices are also in our agenda. Another interesting line of research is to investigate
the concepts of simulation and bisimulation for our knowledge representations on
the lines proposed in [18,14] for generic fuzzy labelled transition systems.

13

Benevides, Madeira and Martins

Finally, it would be interesting to investigate whether our approach allows for
the representation of epistemic actions. Public announcements or private commu-
nications. More interesting is to look for epistemic actions that make sense only
in this (or similar) setting. For example, one can think of situations in which the
agent has a belief of some grade n, and then some new information ’downgrades’ or
’upgrades’ this belief (some form of belief revision, but now in a ’graded’ fashion).

References

[1] W. J. Blok and I. M. A. Ferreirim. On the structure of hoops. algebra universalis, 43(2-3):233–257,
2000.

[2] J. H. Conway. Regular Algebra and Finite Machines. Printed in GB by William Clowes & Sons Ltd,
1971.

[3] L. Godo F. Bou, F. Esteva and R.O. Rodriguez. Many-valued modal logic over a nite residuated lattice.
Journal of Logic and Computation, 21(5):739–790, 2011.

[4] R. Fagin and J. Halpern. Reasoning about knowledge and probability. Journal of the ACM, 41(2):340–
367, 1994.

[5] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. MIT Press, USA, 1995.

[6] Melvin Fitting. Many-valued modal logics. Fundam. Inform., 15(3-4):235–254, 1991.

[7] Michell Guzmán, Stefan Haar, Salim Perchy, Camilo Rueda, and Frank D. Valencia. Belief, knowledge,
lies and other utterances in an algebra for space and extrusion. J. Log. Algebr. Meth. Program.,
86(1):107–133, 2017.

[8] J. Hintikka. Knowledge and Belief. Cornell University Press, Ithaca, N.Y, 1962.

[9] Dexter Kozen. On action algebras. Logic and Information Flow, pages 78–88, 1994.

[10] Alexander Kurz and Alessandra Palmigiano. Epistemic updates on algebras. Logical Methods in
Computer Science, 9(4), 2013.

[11] Alexandre Madeira, Renato Neves, and Manuel A. Martins. An exercise on the generation of many-
valued dynamic logics. J. Log. Algebr. Meth. Program., 85(5):1011–1037, 2016.

[12] Alexandre Madeira, Renato Neves, Manuel A. Martins, and Lúıs Soares Barbosa. A dynamic logic for
every season. In Christiano Braga and Narciso Mart́ı-Oliet, editors, Formal Methods: Foundations and
Applications - 17th Brazilian Symposium, SBMF 2014, Maceió, AL, Brazil, September 29-October 1,
2014. Proceedings, volume 8941 of Lecture Notes in Computer Science, pages 130–145. Springer, 2014.

[13] Yoshihiro Maruyama. Reasoning about fuzzy belief and common belief: With emphasis on incomparable
beliefs. In IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 1008–1013, 2011.

[14] Haiyu Pan, Yongming Li, and Yongzhi Cao. Lattice-valued simulations for quantitative transition
systems. Int. J. Approx. Reasoning, 56:28–42, 2015.

[15] Vaughan R. Pratt. Action logic and pure induction. In JELIA, volume 478 of Lecture Notes in
Computer Science, pages 97–120. Springer, 1990.

[16] Umberto Rivieccio. Bilattice public announcement logic. Advances in Modal Logic, 10:459–477, 2014.

[17] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic. Synthese Library Series,
volume 337. Springer, The Netherland, 2008.

[18] Hengyang Wu and Yuxin Deng. Logical characterizations of simulation and bisimulation for fuzzy
transition systems. Fuzzy Sets and Systems, 301:19–36, 2016.

14

1,2 1

1

2

⇡

Del Vecchio and Mogbil

⇡

�P � P

�P �

Del Vecchio and Mogbil

P

⇠, ⇣, . . .

⇠.1, ⇠.2.1, . . .

((A1 ⊗A2)& B)`C

� A1, C,�1 � A2,�2

� A1 ⊗A2, C,� � B,C,�

� ((A1 ⊗A2)& B)`C,�

& `

A

�
1 � C,�1 A

�
2 ��2

� A1 ⊗A2, C,� � B,C,�

((A1 ⊗A2)� ⊕B

�)⊗C

� ��

⇠.1.1 � ⇠.3,�1 ⇠.1.2 ��2

� ⇠.1, ⇠.3,� � ⇠.2, ⇠.3,�

⇠ ��

�
i

D

●
Dai

+
� ∶ ��

6
�

●
. . . ⇠.i ��

i

. . .

��, ⇠

(+, ⇠, I)

i ∈ I I ⊂ N I ⇠ �
i

�

●
. . . � ⇠.I,�

I

. . .

⇠ ��
(−, ⇠,N)

N ⇠ N ⊂ P
fin

(N) ⇠.I =
⇠.1, . . . , ⇠.n 1, . . . , n ∈ I I ∈N �

I

�

Del Vecchio and Mogbil

⇠.i i ∈ I ⇣.i1, . . . , ⇣.i

n

i1, . . . , in ∈
I I ∈ N ⇠.i

⇠

Dai

+

⇠.1.1.1 �
(+, ⇠.1.1,{1})4

� ⇠.1.1
(−, ⇠.1,{{1}})3

⇠.1 �

⇠.2.1.1 �
(+, ⇠.2.1,{1})8

� ⇠.2.1
(−, ⇠.2,{{1}})7

⇠.2 �
(+, ⇠,{1,2})0

� ⇠

610

� ⇠.2.1.1, ⇠.1.1.1
(−, ⇠.2.1,{{1}})9

⇠.2.1 � ⇠.1.1.1
(+, ⇠.2,{1})6

� ⇠.1.1.1, ⇠.2
(−, ⇠.1.1,{{1}})5

⇠.1.1 � ⇠.2
(+, ⇠.1,{1})2

� ⇠.1, ⇠.2
(−, ⇠,{{1,2}})1

⇠ �

n

� ⇠ ⇠ � +
{1,2}

6
D

C D�C C ∈ D�

B = {D1, . . . ,Dn

}
B�� =B

P,Q ∶= 1 � al

.P � am

.P � (P � Q)

a, b, c, . . . A
l,m, o, . . . Loc

Loc

P

P a

l

, b

m

, c

o

, a

l

.P

a

m

.P P � Q
1 0

(+)
P � 1 ≡ P

Del Vecchio and Mogbil

1 <
P

P = a

l

.b

m � Q l <
P

m

i, j, u, v, . . . (al

, a

m)

a

l

.P � am

.Q→(l,m) P � Q.

P S
P

u, v

(u, v) ∈ X
P

xor P

xor(u) = {v1, . . . , vn

� (u, v

i

) ∈ X
P

,1 ≤ i ≤ n}
u

u <
P

�SP u �SP v l ∈ u

m ∈ v l <
P

m

u v

u � v � u

xor

Loc

P

S
P

X
P

D
P

P

<
P

�SP X
P

D
P

R(P)

R(P)
D

P

D ∶

⇠.1.1.1 �
(+, ⇠.1.1,{1})

� ⇠.1.1
(−, ⇠.1,{{1}})

⇠.1 �

⇠.2.1.1 �
(+, ⇠.2.1,{1})

� ⇠.2.1
(−, ⇠.2,{{1}})

⇠.2 �
(+, ⇠,{1,2})

� ⇠

Del Vecchio and Mogbil

C ∶

6
� ⇠.2.1.1, ⇠.1.1.1

(−, ⇠.2.1,{{1}})
⇠.2.1 � ⇠.1.1.1

(+, ⇠.2,{1})
� ⇠.1.1.1, ⇠.2

(−, ⇠.1.1,{{1}})
⇠.1.1 � ⇠.2

(+, ⇠.1,{1})
� ⇠.1, ⇠.2

(−, ⇠,{{1,2}})
⇠ �

E ∶

6
� ⇠.1.1.1, ⇠.2.1.1

(−, ⇠.1.1,{{1}})
⇠.1.1 � ⇠.2.1.1

(+, ⇠.1,{1})
� ⇠.2.1.1, ⇠.2

(−, ⇠.2.1,{{1}})
⇠.2.1 � ⇠.2

(+, ⇠.2,{1})
� ⇠.2, ⇠.1

(−, ⇠,{{1,2}})
⇠ �

C E D

D∗ ∶ p

⇠.1 �

6
� ⇠.2.1

(−, ⇠.2,{{1}})
⇠.2 �

(+, ⇠,{1,2})
� ⇠

p ⇠.1 �
E ⇠.1

⇠.2 � 6 ⇠.2.1 E ∈
{D,D∗}� ⇠.2 C ∉ {D,D∗}�

⇠.2 < ⇠.1

[]
P

Loc

P

∪S
P

∪X
P

x ∈ Loc

P

∪S
P

G[x]
[x]

P

[u]
P

= ⇠.1 [l]
P

= ⇠.2 u ∈ S
P

l ∈ Loc

P

(u, v) ∈ X
P

w[u, v]
& xor

u &xor

v

(u, v)

D
P

= (�
x∈(SP∪LocP),(u,v)∈XP

{G[x],w[u, v]})

� (+, ⇠, I)
I

⇠

R(i) i = (am

, a

o)
l <

P

o D
P

6
G[l] G[i] R(i)

� D
P

R(i) D
P

[l] � [i] � (u, v) ∈ X
P

xor u v

Del Vecchio and Mogbil

Secondly existing constraints on process need to be reflected –a new Ludic opera-
tion to restrict designs is used and cloture properties are obtained to bi-orthogonality.
So the partial orders <

P

and � and conflict relation X
P

are then represented using
particular directed (or non commutative) modifications of D

P

, called restriction de-
signs, denoted R(P), via a technique found in [9] (the pruning of a branch of a
design). R(P) restrict the possible interactions on D

P

by forcing it to respect the
prefix order and conflict relation, once we put them together as the generators of a
behaviour. Using the designs of the previous example, we try to give an intuition of
the idea behind the pruning.

Example 3.1 D ∶

⇠.1.1.1 �
(+, ⇠.1.1,{1})

� ⇠.1.1
(−, ⇠.1,{{1}})

⇠.1 �

⇠.2.1.1 �
(+, ⇠.2.1,{1})

� ⇠.2.1
(−, ⇠.2,{{1}})

⇠.2 �
(+, ⇠,{1,2})

� ⇠

C ∶

6
� ⇠.2.1.1, ⇠.1.1.1

(−, ⇠.2.1,{{1}})
⇠.2.1 � ⇠.1.1.1

(+, ⇠.2,{1})
� ⇠.1.1.1, ⇠.2

(−, ⇠.1.1,{{1}})
⇠.1.1 � ⇠.2

(+, ⇠.1,{1})
� ⇠.1, ⇠.2

(−, ⇠,{{1,2}})
⇠ �

E ∶

6
� ⇠.1.1.1, ⇠.2.1.1

(−, ⇠.1.1,{{1}})
⇠.1.1 � ⇠.2.1.1

(+, ⇠.1,{1})
� ⇠.2.1.1, ⇠.2

(−, ⇠.2.1,{{1}})
⇠.2.1 � ⇠.2

(+, ⇠.2,{1})
� ⇠.2, ⇠.1

(−, ⇠,{{1,2}})
⇠ �

Both C and E are orthogonal to D. However

D∗ ∶ p

⇠.1 �

6
� ⇠.2.1

(−, ⇠.2,{{1}})
⇠.2 �

(+, ⇠,{1,2})
� ⇠

where p denotes a pruning on the branch starting with ⇠.1 �, is orthogonal only to
E: interaction cannot continue on ⇠.1, since it is not introduced by a rule anymore,
but can only pass through ⇠.2 �. In conclusion E ∈ {D,D∗}�, since it visits the ⇠.2
branch first, while C ∉ {D,D∗}�; in this way we have forced interaction to respect the
order ⇠.2 < ⇠.1.

G[x] =

[x]
P

.1.1 �
� [x]

P

.1

[x]
P

� w[u, v] =

xor

u

.1 �
� xor

u

xor

v

.1 �
� xor

v

xor

u & xor

v � R(i) =
..

6
� [l].1
[l] � ..

p
[i] � ..

� ⇠

Formally, we use the following constructions: for x ∈ Loc

P

∪ S
P

, we build the
following advice design (of negative base):

G[x] =
[x]

P

.1.1 �
� [x]

P

.1

[x]
P

�
where [x]

P

is an address assigned to the synchronisation

or location in question, and []
P

an assignment function from Loc

P

∪ S
P

∪ X
P

to

5

Del Vecchio and Mogbil

Secondly existing constraints on process need to be reflected –a new Ludic opera-
tion to restrict designs is used and cloture properties are obtained to bi-orthogonality.
So the partial orders <

P

and � and conflict relation X
P

are then represented using
particular directed (or non commutative) modifications of D

P

, called restriction de-
signs, denoted R(P), via a technique found in [9] (the pruning of a branch of a
design). R(P) restrict the possible interactions on D

P

by forcing it to respect the
prefix order and conflict relation, once we put them together as the generators of a
behaviour. Using the designs of the previous example, we try to give an intuition of
the idea behind the pruning.

Example 3.1 D ∶

⇠.1.1.1 �
(+, ⇠.1.1,{1})

� ⇠.1.1
(−, ⇠.1,{{1}})

⇠.1 �

⇠.2.1.1 �
(+, ⇠.2.1,{1})

� ⇠.2.1
(−, ⇠.2,{{1}})

⇠.2 �
(+, ⇠,{1,2})

� ⇠

C ∶

6
� ⇠.2.1.1, ⇠.1.1.1

(−, ⇠.2.1,{{1}})
⇠.2.1 � ⇠.1.1.1

(+, ⇠.2,{1})
� ⇠.1.1.1, ⇠.2

(−, ⇠.1.1,{{1}})
⇠.1.1 � ⇠.2

(+, ⇠.1,{1})
� ⇠.1, ⇠.2

(−, ⇠,{{1,2}})
⇠ �

E ∶

6
� ⇠.1.1.1, ⇠.2.1.1

(−, ⇠.1.1,{{1}})
⇠.1.1 � ⇠.2.1.1

(+, ⇠.1,{1})
� ⇠.2.1.1, ⇠.2

(−, ⇠.2.1,{{1}})
⇠.2.1 � ⇠.2

(+, ⇠.2,{1})
� ⇠.2, ⇠.1

(−, ⇠,{{1,2}})
⇠ �

Both C and E are orthogonal to D. However

D∗ ∶ p

⇠.1 �

6
� ⇠.2.1

(−, ⇠.2,{{1}})
⇠.2 �

(+, ⇠,{1,2})
� ⇠

where p denotes a pruning on the branch starting with ⇠.1 �, is orthogonal only to
E: interaction cannot continue on ⇠.1, since it is not introduced by a rule anymore,
but can only pass through ⇠.2 �. In conclusion E ∈ {D,D∗}�, since it visits the ⇠.2
branch first, while C ∉ {D,D∗}�; in this way we have forced interaction to respect the
order ⇠.2 < ⇠.1.

G[x] =

[x]
P

.1.1 �
� [x]

P

.1

[x]
P

� w[u, v] =

xor

u

.1 �
� xor

u

xor

v

.1 �
� xor

v

xor

u & xor

v � R(i) =
..

6
� [l].1
[l] � ..

p
[i] � ..

� ⇠

Formally, we use the following constructions: for x ∈ Loc

P

∪ S
P

, we build the
following advice design (of negative base):

G[x] =
[x]

P

.1.1 �
� [x]

P

.1

[x]
P

�
where [x]

P

is an address assigned to the synchronisation

or location in question, and []
P

an assignment function from Loc

P

∪ S
P

∪ X
P

to

5

Del Vecchio and Mogbil

Secondly existing constraints on process need to be reflected –a new Ludic opera-
tion to restrict designs is used and cloture properties are obtained to bi-orthogonality.
So the partial orders <

P

and � and conflict relation X
P

are then represented using
particular directed (or non commutative) modifications of D

P

, called restriction de-
signs, denoted R(P), via a technique found in [9] (the pruning of a branch of a
design). R(P) restrict the possible interactions on D

P

by forcing it to respect the
prefix order and conflict relation, once we put them together as the generators of a
behaviour. Using the designs of the previous example, we try to give an intuition of
the idea behind the pruning.

Example 3.1 D ∶

⇠.1.1.1 �
(+, ⇠.1.1,{1})

� ⇠.1.1
(−, ⇠.1,{{1}})

⇠.1 �

⇠.2.1.1 �
(+, ⇠.2.1,{1})

� ⇠.2.1
(−, ⇠.2,{{1}})

⇠.2 �
(+, ⇠,{1,2})

� ⇠

C ∶

6
� ⇠.2.1.1, ⇠.1.1.1

(−, ⇠.2.1,{{1}})
⇠.2.1 � ⇠.1.1.1

(+, ⇠.2,{1})
� ⇠.1.1.1, ⇠.2

(−, ⇠.1.1,{{1}})
⇠.1.1 � ⇠.2

(+, ⇠.1,{1})
� ⇠.1, ⇠.2

(−, ⇠,{{1,2}})
⇠ �

E ∶

6
� ⇠.1.1.1, ⇠.2.1.1

(−, ⇠.1.1,{{1}})
⇠.1.1 � ⇠.2.1.1

(+, ⇠.1,{1})
� ⇠.2.1.1, ⇠.2

(−, ⇠.2.1,{{1}})
⇠.2.1 � ⇠.2

(+, ⇠.2,{1})
� ⇠.2, ⇠.1

(−, ⇠,{{1,2}})
⇠ �

Both C and E are orthogonal to D. However

D∗ ∶ p

⇠.1 �

6
� ⇠.2.1

(−, ⇠.2,{{1}})
⇠.2 �

(+, ⇠,{1,2})
� ⇠

where p denotes a pruning on the branch starting with ⇠.1 �, is orthogonal only to
E: interaction cannot continue on ⇠.1, since it is not introduced by a rule anymore,
but can only pass through ⇠.2 �. In conclusion E ∈ {D,D∗}�, since it visits the ⇠.2
branch first, while C ∉ {D,D∗}�; in this way we have forced interaction to respect the
order ⇠.2 < ⇠.1.

G[x] =

[x]
P

.1.1 �
� [x]

P

.1

[x]
P

� w[u, v] =

xor

u

.1 �
� xor

u

xor

v

.1 �
� xor

v

xor

u & xor

v � R(i) =
..

6
� [l].1
[l] � ..

p
[i] � ..

� ⇠

Formally, we use the following constructions: for x ∈ Loc

P

∪ S
P

, we build the
following advice design (of negative base):

G[x] =
[x]

P

.1.1 �
� [x]

P

.1

[x]
P

�
where [x]

P

is an address assigned to the synchronisation

or location in question, and []
P

an assignment function from Loc

P

∪ S
P

∪ X
P

to

5

i ∈ SP

Del Vecchio and Mogbil

B
P

= B��
P

= ({D
P

} ∪R(x) ∪R((u, v)))��

x ∈ (S
P

∪ Loc

P

) (u, v) ∈ X
P

R(x�(u, v))

�P � = (B
P

, []
P

) B
P

[]
P

S
P

X
P

Loc

P

�

P

�P �

B
P

P

<SP xor X
P

P KDC
D C

C ∈B�
P

P C →
i1 �→in

Del Vecchio and Mogbil

addresses; for instance [u]
P

= ⇠.1 and [l]
P

= ⇠.2, with u ∈ S
P

and l ∈ Loc

P

. Each
(u, v) ∈ X

P

, to fork the interaction path, is interpreted by the following advice:

w[u, v] =

xor

u

.1 �
� xor

u

xor

v

.1 �
� xor

v

xor

u & xor

v � where we use & since it is a binary negative rule,
and xor

u & xor

v is an address assigned to the clause (u, v). Then, the base design
is:

D
P

= (�
i∈SP ,l∈LocP ,(u,v)∈XP

{G[i],G[l],w[u, v]})

where � is a sole positive rule with each element of the set as an element of
its ramification (we assume that the assigned addresses have all the same prefix),
and thus a different premise, each containing a sub-address of the focus of �. A
restriction R(i) for a synchronisation i = (am

, a

o) such that, for instance l <
P

o (like
in P = b

l

.a

o � am), is an alteration of a copy of D
P

obtained by forcing 6 on G[l]
and pruning on G[i]. Such restriction is of the following form:

R(i) =
. . .

� [l].1 6

[l] � . . . [i] �
p

. . .

� ⇠ where the dots � stands for all the
other sub-designs of D

P

, which remain unaffected. Any interaction with a design
orthogonal to both R(i) and D

P

will be forced to visit [l] � before [i] �.
For (u, v) ∈ X

P

, instead, we need two restriction designs:

�

6
� xor

u

xor

v

.1 �
� xor

v

xor

u & xor

v � �
p

[u] � �
� ⇠

and the same for v:

�

xor

u

.1 �
� xor

u

6
� xor

v

xor

u & xor

v � �
p

[v] � �
� ⇠

Thus interpreting each member of the xor pair (u or v) to a different branch of
the negative rule, which effectively fork the interaction path. To finish we need to
put the base design and all restriction designs together: they form the generator of
a behaviour by using bi-orthogonality. Therefore, let

B
P

= (B
P

)�� = ({D
P

} ∪R(i) ∪R(l) ∪R((u, v)))��

for all i ∈ S
P

, l ∈ Loc

P

, (u, v) ∈ X
P

3 . Then, the interpretation of P is �P � =
(B

P

, []
P

), the pair formed by the connected behaviour B
P

and an assignment
function []

P

from S
P

, X
P

and Loc

P

to addresses.

..

6
� xor

u

xor

v

.1 �
� xor

v

xor

u & xor

v � ..

p

[u] � ..

� ⇠

..

xor

u

.1 �
� xor

u

6
� xor

v

xor

u & xor

v � ..

p

[v] � ..

� ⇠

3 Note that R(�) is actually a set of restrictions, usually more than one design.

6

(u, v) ∈ XP

Del Vecchio and Mogbil

i ∈ (i1, . . . , in)

(−, [i],{{1}})(+, [i].1,{1}) = G[i] ∈ KDPC ,

D
P

�

⇠.1.1.1 �
� ⇠.1.1

(+, ⇠.1.1,{1})4

⇠.1 � (−, ⇠.1,{{1}})3
⇠.2.1.1 �
� ⇠.2.1

(+, ⇠.2.1,{1})8

⇠.2 � (−, ⇠.2,{{1}})7 �
� ⇠

(+, ⇠, I)0

C

� ⇠.2.1.1, ⇠.1.1.1,� 610

⇠.2.1 � ⇠.1.1.1,�
(−, ⇠.2.1,{{1}})9

� ⇠.1.1.1, ⇠.2,�
(+, ⇠.2,{1})6

⇠.1.1 � ⇠.2,�
(−, ⇠.1.1,{{1}})5

� ⇠.1, ⇠.2,�
(+, ⇠.1,{1})2

⇠ � (−, ⇠,{I})1

⇠.1 = [i] ⇠.2 = [j] KDPC =
(+, ⇠, I)(−, [i],{{1}})(+, [i].1,{1})(−, [j],{{1}})(+, [j].1,{1})

KDPC →
i,j

i, j

�SP D
P

xor

P MCCS �P � P

B
P

B�
P

<
P

X
P

P � Q B
P

B
Q

�
⊗

⊙
D C � ⇠

(+, ⇠, I) (+, ⇠, J) I ∩ J = �

D ⊙ C = {(+, ⇠, I ∪ J) � (+, ⇠, I) ∈ D (+, ⇠, J) ∈ C}

I ∩ J ≠ � D C 6 D ⊙ C = 6

Del Vecchio and Mogbil

B E

B�E = {D ⊙ C � D ∈B,C ∈ E }��

[]
P

∪ []
Q

P

Q P � Q P Q

B
P

B
Q

P Q

�P � Q� = (B
P

�B
Q

, []
P

∪ []
Q

).

[]
P

[]
P

[]
Q

D
P

D
Q

[]
P

[]
Q

P Q

P � Q xor

⊙

newS
P �Q = SP �Q � (SP

∪ S
Q

) newX
P �Q = XP �Q � (XP

∪X
Q

).

xor

[]
P

[]
Q

N
P �Q

P Q (+, ⇠, I) (+, ⇠, J)
D

P

D
Q

N
P �Q

N ∩ I = N ∩ J = �

G[k1] � G[k
n

] w[x1, y1] � w[x
n

, y

n

]
(+, ⇠,N)

� ⇠

{k1, . . . , kn

} = newS
P �Q {(x1, y1), . . . , (xn

, y

n

)} = newX
P �Q

[]N newS
P �Q newX

P �Q
N D

P

⊙D
Q

⊙N
P �Q

<
P �Q <

P

∪ <
Q

X
P �Q

newS
P �Q newX

P �Q D
P

⊙

Del Vecchio and Mogbil

D
Q

⊙N
P �Q

(B
P

⌘ B
Q

)��

�P �⌘ �Q� = ((B
P

⌘ B
Q

)��, []
P⊙Q

∪ []N).

P,Q �P �⌘ �Q� = �P � Q�

�P �
�P � u ∈ S

P

→
u

P �P ��
u

(�P �)
u

(+, ⇠, I)
D

P

D
P

G[x]
w[x, y] u = (l,m)

u G[u] G[l] G[m] G[x] w[u,x] x ∈ xor(u) w[x, y]
y ∈ xor(x) K = {i, . . . ,m}

D
P

(+, ⇠, I �K)
R(P)

B
P

(�P �)
u

�P �

KC′ (�P �)
u

KC �P �
KC′

KC KC′ G[v] v

u �SP v G[u] (�P �)
u

G[v]
�P � G[u]

(D
P

)
u

D
P

(B
P

)
u

B
P

u (B
P

)
u

6
(D

P

)
u

P �P �
u ∈ S

P

P →
u

P

′ �P ′� = (�P �)
u

P →
u

P

′

�P ��
u

(�P �)
u

�−� �−�

Del Vecchio and Mogbil

�P � P

One = (+, ⇠,�)
� ⇠

1 P

P →∗ 1 �P ��∗ {One}��

P

B
P

B�
P

B
P

D
P

�D
P

�
D

P

�D
P

� = D
P

P

�D
P

� ≠ D
P

D
P

P

1

P P P ≠ 1
�SP

(i) P P

�P � P →∗ 1
P

�SP

P

(ii)
D

P

�P � �D
P

�
D

P

R(�) D
P

�P �

P = a

1
.b

2
.Q � b3

.c

4
.R � c5

.a

6
.S

u1 = (a1
, a

6) �SP u2 = (b
2
, b

3) �SP u3 = (c4
, c

5) �SP u1

�P �
u

i

G[u
i

] 1 ≤ i ≤ 3 G[l] l

Del Vecchio and Mogbil

G[u
i

]

+

P = a

l

.P

′ + b

m

.Q

′ � an

.P

′′ + b

o

.Q

′′ →(l,n) P

′ � P ′′

xor

X
P

a b u = (al

, a

n) v = (bm

, b

o)

u v

<
P

P

′
v P

′′
u

xor

+
⌫a(P)

P �a

P = ⌫a(al

.R) � am

.Q (al

, a

m)

⌫

⌫a(P � Q) ≡ ⌫a(P) � Q, a ∉ fv(Q),
⌫a(P) � ⌫b(Q) ≡ ⌫a(⌫b(P � Q)) ≡ ⌫b(⌫a(P � Q)), a ∉ fv(Q) b ∉ fv(P).

fv

a

l

⌫

S
P

(al

, a

m)
a

l

⌫

a

m

⌫

D
P

R(P)
P

[]
P

Del Vecchio and Mogbil

⇡

1

⇡I

�SP

⇡

A = (A,ar) A

ar ∶ A → N
V x, y, z, . . . 6 ⌦

a a ∈ A x ∈ V a(x1, . . . , xn

)
a ∈ A ar(a) = n x1, . . . , xn

�→
x

a

a D
P ∶∶= 6 � ⌦ � (N0 � a�N1, . . . ,Nn

�)
N ∶∶= x � ∑a(�→x

a

).P
a

P N

N0 x

2 ≠ ⌦

Loc

P

,S
P

,X
P

●
G[u] = [u](x

u

).(x
u

� [u.1]�0�)
●

w[u, v] = [xor

u](x
u

).x
u

� [xor

u

.1]�0� + [xor

v](x
v

).x
v

� [xor

v

.1]�0�
● D

P

= x0 � a�G[x], . . . ,w[x, y], . . .� x S
P

∪Loc

P

(x, y) X
P

[]

1

⇡ ↵

2

Del Vecchio and Mogbil

�

(�a(�→x
a

.P

a

) � a��→N �)→ P

a

[�→N ��→x
a

]

�→
N ar(a) a(�→x

a

)
a��→N �

P

a

a

P

a

[�→N ��→x
a

]
x 6 ⌦

6
● D = x0 � a0�a1(x1).x1 � a11�0�, a2(x2).x2 � a21�0��
● C = a0(x1, x2).x1 � a1�a11(x11).x2 � a2�a21(x21).6��
● E = a0(x1, x2).x2 � a2�a21(x21).x1 � a1�a11(x11).6��
● D∗ = x0 � a0�0p

, a2(x2).6�
p 0 +

C � D E � D 6 E
D∗ x0 D∗ E

E � D∗ = (a0(x1, x2).x2 � a2�a21(x21).x1 � a1�a11(x11).6��) � a0�0p

, a2(x2).6�

6
(a2(x2).6) � (a2�a21(x21).0p) � a1�a11(x11).6��.
6

C � D∗ = (a0(x1, x2).x1 � a1�a11(x11).x2 � a2�a21(x21).6��)�a0�0p

, a2(x2).6�

(0p) � (a1�a11(x11).6) � a2(x2).6 � a2�a21(x21).��.
⌦ 0p

P0

c

B
P

⊙

D = x0 � a1�N1, . . . ,N
k

� C = x0 � a2�N
k+1, . . . ,Nk+n�

D ⊙ C = x0 � a3�N1, . . . ,N
k

,N

k+1, . . . ,Nk+n�

D
P

a

⊙

D
P

One One = x0 � a�� = x0 � a

Del Vecchio and Mogbil

D
P

�P �

c

1 − 1

CCS

●

●

⊗

⊙
●

●

●

1

c

CCS

Del Vecchio and Mogbil

⇡

⇡

⇡

⇡

Del Vecchio and Mogbil

P MCCS

i = (al

, a

h) ∈ S
P

F (i) = {m,n ∈ Loc

P

� l <
P

m ∨ h <
P

n}.

i F (i) = �
i F (i) = {m} p

l

i F (i) = {m,n} m <
P

l n <
P

h m,n l, h

l ∈ Loc

P

F (l) = {i ∈ S
P

� l ∈ i} ∃i ∈ S
P

l ∈ i F (l) = �
R(l) G[l] 6

G[l]
R(i),R(l), . . .

i ∈ S
P

i

R(i) D
P

F (i) = �
[]

P

F (i) = {l} R(i) D
P

R(i) =
. . .

� [l].1 6

[l] � . . . [i] �
p

. . .

� ⇠

F (i) = {m,n} R(i)

�

6
� [m].1
[m] � � [i] �

� ⇠

�

6
� [n].1
[n] � � [i] �

� ⇠

Del Vecchio and Mogbil

l,m ∈ Loc

P

m <
P

l F (l) = {i1, . . . , in} R(l)

�

6
� [m].1
[m] � � [l] �

� ⇠

. . .

� [i1].1
6

[i1] � . . .

� [i
n

].1 6

[i
n

] � . . . [l] �
p

. . .

� ⇠

F (l) = �
. . . [l] �

p

. . .

� ⇠

R(X
P

) (u, v) ∈ X
P

. . .

� xor

u

6 xor

v

.1 �
� xor

v

xor

u & xor

v � . . . [u] �
p

. . .

� ⇠

v

. . .

xor

u

.1 �
� xor

u � xor

v

6
xor

u & xor

v � . . . [v] �
p

. . .

� ⇠

R(P) R(X
P

)∪{R(i),R(l) � i ∈ S
P

, l ∈ Loc

P

} �
D

P

P MCCS P →
i

∃C ∈B�
P

KDPC i

⇐ KDPC G[i] G[x]
i i P →

i

⇒ P →
i

i

F (i) = �

Del Vecchio and Mogbil

G[i] [i]� =

� [i].1.1,�
6

[i].1 ��
(−, i.1,{{1}})

� [i], xor

i1
.1, . . . , xor

in
.1,�

(+, i,{1})

xor

in � [i], xor

i1
.1, . . . , xor

in−1� (−, xor

in
,{{1}})

⋮
xor

i1 � xor

i2 & xor

j2
. . . , xor

in & xor

jn
, [i],�

(−, xor

i1
,{{1}})

� xor

i1 & xor

j1
, . . . , xor

in & xor

jn
, [i],�

(+, xor

i1 & xor

j1
,{xor

i1})

⇠ � (−, ⇠,{I})

[i]��B
P

KDPC →
i

� D
P

D
P

[i]� xor

i1 & xor

j1
, . . . , xor

in & xor

jn

xor (i, x) ∈ X
P

�

C =
⋮

⇠1 �
⋮

⇠3 �
� ⇠

D =
⋮

⇣1 �
⋮

⇣2 �
⋮

⇣3 �
� ⇣

⇥ C D ⇥C = C

⇥D =
⋮

⇠1 �
⋮

⇠2 �
⋮

⇠3 �
� ⇠

C ⇥(D)
I = {1,2,3}

D D

D[J={4,5,6}�
I

] =
⋮

⇠4 �
⋮

⇠5 �
⋮

⇠6 �
� ⇠

C ⇥D

C�(⇥D) =
⋮

⇠1 �
⋮

⇠3 �
⋮

⇠4 �
⋮

⇠5 �
⋮

⇠6 �
(+, ⇠,{1, . . . ,6})

� ⇠

newS
P � Q

= S
P � Q

� S
P

∪ S
Q

newX
P � Q

= X
P � Q

�X
P

∪X
Q

newS
P � Q

i, j, . . .

(al

, a

m) a ∈ P a ∈ Q newX
P � Q

(u, v)

Del Vecchio and Mogbil

u v newS
P � Q

X
P

X
Q

P � Q P Q

[]
P

[]
Q

P Q (al

, a

m)
a

l ∈ []
P

a

m ∈ []
Q

newS
P � Q

newX
P � Q

(u, v) u v

u ∈ newS
P � Q

v ∉ newS
P � Q

v ∈ []
P

[]
Q

[]
P

[]
Q

newS
P � Q

newX
P � Q

⊙ D
P

D
Q

N
P � Q

P,Q MCCS

D
P

�D
Q

= D
P

⊙D
Q

⊙N
P � Q

= D
P � Q

,

D
P

�D
Q

D
P � Q

N
P � Q

P � Q P Q xor

N
P � Q

newS
P � Q

newX
P � Q

D
P

�D
Q

D
P � Q

Loc

P � Q

= Loc

P

∪ Loc

Q

<
P � Q

=<
P

∪ <
Q

S
P

∪ S
Q

xor

D
P

�D
Q

D
P � Q

�

�P � � �Q� �P � Q�
P Q

<
P � Q

=<
P

∪ <
Q

F (i) F ((u, v))
i S

P

∪S
Q

(u, v) X
P

∪X
Q

S
P

∪S
Q

⊆ S
P � Q

F (l) P Q i ∈ newS
P � Q

l ∈ i R(P) R(Q) 6

Del Vecchio and Mogbil

D
P

�D
Q

R(P)DP �DQ R(Q)DP �DQ

newX
P � Q

R(j)
j ∈ newS

P � Q

j = (al

, a

m)
l m h, k

h < l k < m

R(l) R(m)
6 G[h] h [l] �

m k h, k ∈F (j)

R(j) F (j) F (j)
(P � Q,<

P � Q

)

R(newX
P � Q

)
R(newS

P � Q

) B
P

� B
Q

({D
P

�D
Q

} ∪R(P)DP �DQ ∪R(Q)DP �DQ ∪R(newX
P � Q

) ∪R(newS
P � Q

))��

[]
P⊙Q

∪ []N = []P �Q

B
P

⌘ B
Q

P,Q MCCS

P Q �P �⌘ �Q�

((B
P

⌘ B
Q

)��, []
P �Q

).

P,Q MCCS �P �⌘ �Q� = �P � Q�

B
P

⌘ B
Q

≡ B
P � Q

[]
P �Q

= []
P � Q

B
P

⌘ B
Q

B
P � Q

D
P

�D
Q

= D
P � Q

[]
P � Q

●
Loc

P � Q

= Loc

P

∪Loc

Q

● S
P � Q

= S
P

∪ S
Q

∪ newS
P � Q

● X
P � Q

= X
P

∪X
Q

∪ newX
P � Q

Del Vecchio and Mogbil

[]
P �Q

D
P

�D
Q

= D
P � Q

[]
P � Q

=
[]

P �Q

S
P

∪S
Q

X
P

∪X
Q

xor

P � Q <
P

∪ < Q Loc

P

∪Loc

Q

newS
P � Q

xor

B
P

⌘ B
Q

≡ B
P � Q

�

P →
u

P

′ S
P

′ = S
P

� ({u} ∪ xor(u)) Loc

P

′ = Loc

P

�
{l,m} u = (al

, a

m) xor(u) = {x � (u,x) ∈ X
P

}
G[u],G[l],G[m] G[x] x D

P

′
w[u,x] w[x, y] u x ∈ xor(u)

u

D
P

D
P

R(P)
P MCCS (al

, a

m) = u ∈ S
P

(+, ⇠, I) D
P

u D
P

(D
P

)
u

D
P

u

●
G[u]

●
G[l] G[m]

● [xor

u & xor

x1], . . . , [xor

u & xor

xj] G[x1], . . . ,G[xj

]
(u,x1), . . . , (u,x

j

) ∈ X
P

● [xor

x & xor

y] x ∈ xor(u) y ∈ xor(x)
(+, ⇠, I)

{i1, . . . , in} ⊂ I (+, ⇠, J) J = I � {i1, . . . , in}
[u] = ⇠i1 [l] = ⇠i2 [m] = ⇠i3 G[x1] = ⇠i4 . . . [xor

u & xor

xj] = ⇠i

m

, . . .

[xor

x & xor

y] = ⇠i

n

D
P

B
P

R(P) []
P

Del Vecchio and Mogbil

[]
P

′ ⊂ []
P

[u], [l], [m] [x] [xor

u & xor

x] [xor

x & xor

y] x ∈ xor(u)
y ∈ xor(x) []

P

x ∈ xor(u)
u

x, y S
P

x y

(al

, a

m) = u ∈ S
P

([]
P

)
u

[]
P

�(DP)u []
P

(Loc

P

� {l,m}) ∪ (S
P

� ({u} ∪ {x � ∈ xor(u)}) ∪ (X
P

�
{(u,x) ∪ (x, y)}) x ∈ xor(u) y ∈ xor(x)

([]
P

)
u

(D
P

)
u

[]
P

′
P →

u

P

′

P →
u

P

′ ([]
P

)
u

(D
P

)
u

([]
P

)
u

= []
P

′

D
P

′ []
P

′
(D

P

)
u

([]
P

)
u

I D
P

′
J (D

P

)
u

I

([]
P

)
u

= []
P

′
.

�

D
P

′ (D
P

)
u

G[l] G[u] w[x, v]

P →
u

P

′ D
P

′ = (D
P

)
u

u

u

6

{D
P

}

(al

, a

m) = u ∈ S
P

R([u])
�P � G[u],G[l] G[m] [xor

u &xor

x] [xor

x &xor

y] x ∈ xor(u)
y ∈ xor(x) 6 6 G[u]

G[x]
u

u x ∈ xor(u)
R(l) R(m) G[u]

Del Vecchio and Mogbil

6
x u u

G[x] 6

x

G[x] 6 G[j] j

j

G[x]
xor

u u

G[u] u

u

G[u]

R(P)
R(P) �(DP)u 6

(B
P

)
u

= ({(D
P

)
u

} ∪R(P) �(DP)u)
��

R([u]) {(D
P

)
u

}∪R(P) �(DP)u

R(P) (D
P

)
u

u

6 R([u])
R([u]) (D

P

)
u

�

�P �
P MCCS �P �

u ∈ S
P

u �P � (�P �)
u

= ((B
P

)
u

, ([]
P

)
u

)
�P ��

u

(�P �)
u

(�P �)
u

= �P ′� P →
u

P

′

�P �
P

′ →
vi

v

i

= v

j

v0

v

j

u

v0 u

Del Vecchio and Mogbil

P →
u,v0

�P ′�
�P �
�P �

�P ′� u

KC
B�

P

B�
P

′
D

P

D
P

′
D

P

D
P

′
P

′

u []
P

′
[]

P

(B
P

)
u

u

P �P �
u ∈ S

P

P →
u

P

′ �P ′� = (�P �)
u

P →
u

P

′

�P ��
u

(�P �)
u

�−� �−�

D
P

′ = (D
P

)
u

[]
P

′ = ([]
P

)
u

R(P ′) = (R(P))
u

�P ′� = (�P �)
u

.

�

P →
u

P

′ ∀C′ ∈B
P

′
,∃C ∈B

P

● KC′ � KC � (KC′ � (+, ⇠, I)) = (KC � (+, ⇠, J)) I ⊂ J

(+, ⇠, I) D
P

′ (+, ⇠, J) D
P

[v
i

], [�→v] v

i

1
u

● KC′ � KC � (KC′ � (+, ⇠, I)) = (KC � ((+, ⇠, J), u��) I ⊂ J

(+, ⇠, I) D
P

′ (+, ⇠, J) D
P

u

�

u

xor u G[u] G[l]
G[m] u = (al

, a

m)

Del Vecchio and Mogbil

[v0], [�→v] v0 2
u

B
P

′ � � B
P

B
P

′
B

P

�

1

One = (+, ⇠,�)
� ⇠

1 P

P →∗ 1 �P ��∗ {One}��

(�P �)∗ P →∗ 1
�P �

xor D
P

(+, ⇠,�)
� ⇠

One

1

1 0

One ⊙
�

Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Formalizing Constructive Projective Geometry

in Agda

Guillermo Calderón

1

University of the Republic
Montevideo, Uruguay

Abstract

We present a formalization of Projective Geometry in the proof assistant and programming language Agda.
We formalize a recent development on constructive Projective Geometry which has been showed appropriate
to cover most traditional topics in the area applying only constructively valid methods. The equivalence
with other well-known constructive axiomatic systems for projective geometry is proved and formalized.
The implementation covers a basic fragment of intuitionistic synthetic Projective Plane Geometry including
the axioms, principle of duality, Fano and Desargues properties and harmonic conjugates.
We focuse in an illustrative example of implementation of a complex and large proof which appears partially
and vaguely described in the literature; namely the uniqueness of the harmonic conjugate.
The most important details of our implementation are described and we show how to take advantage of
several interesting properties of Agda such as modules, dependent record types, implicit arguments and
instances which result very helpful to reduce the typical verbosity of formal proofs.

Keywords: proof assistants, formalizations of mathematics, projective geometry, type theory, Agda

1 Introduction

Projective Geometry is a well-established branch of mathematics which studies the
incidence properties of points, lines and planes. Typical textbooks relative to this
area (e.g. [4,23]) cover topics such as: axiomatic definition of points and lines,
incidence relation, principle of duality, Desargues and Fano theorem, harmonic con-
jugates, projectivities, polarities, conics, etc..

Projective geometry constitutes a very elegant, self-contained mathematical sys-
tem. It is constructed from two primitive concepts: points and lines together with a
relation of incidence among them. In addition, a few axioms determine the behaviour
of the entire system. For this reason, projective geometry becomes a very attractive
discipline to be formalized in a computer system. and an interesting case study in
order to investigate problems involved with computer formalization of mathematics.

Despite its simplicity, projective geometry is considered as a unifying framework
for all other geometries. Every result in projective geometry can be applied to affine

1 Email: calderon@fing.edu.uy

c�2017 Published by Elsevier Science B. V.

Calderon

geometry which in turn reduces to Euclidean geometry. This feature is implicit in
the so called Erlangen program of F. Klein [9] where projective geometry is defined
as the study of the properties invariant under projectivities.

On the other hand, projective geometry has a number of important applica-
tions in different areas of computer science, such as: computer vision, cryptography,
computer graphics [3,6,2]. A computer formalization of projective geometry will con-
tribute to the construction of certified computer algorithms to solve known problems
in these areas.

This paper describes a computer formalization of constructive projective plane
geometry. In a first instance, we implement the system of axioms presented in
Mandekern’s paper [15] which is based on previous constructive developments of
projective geometry such as [7] and [22]. The constructive method implies among
other things that: the principle of excluded middle is not used at all; existential
proofs are always achieved by effective construction of a witness; it is not assumed
anything about decidability of basic relations.

Our formalization 2 is written in Agda [19], a proof assistant and functional pro-
gramming language based on Intuitionistic Type Theory [17]. In particular, we are
concerned with the construction of a programming tool which helps us to write for-
mal proofs in projective geometry in a comfortable way but without using automated
tactics.

Outline. The paper is organized as follows. In Section 2, we present the formal-
ization of apartness relation and setoids. Section 3 describes the representation of
the projective plane and its axioms in Agda. In Section 4, a method is presented to
prove equalities with expressions involving the meet and join functions of a projec-
tive plane. In Section 5, we summarize some proofs developed in our formalization,
in particular we comment about the implementation of the principle of duality. In
Section 6, an overview about the implementation of Fano and Desargues properties
is presented. In Section 7, we describe the formalization of harmonic conjugates and
the proofs of existence and uniqueness. Finally, conclusions and related work are
discussed in Section 8.

2 Apartness and Constructive Setoids

In the constructive formulation of projective geometry we are following, it is nec-
essary to define the equality relation as derived from a primitive apartness relation
(i.e inequality). Detailed explanation of this methodology can be found in [24] and
[15]. In this section we describe our implementation of apartness and setoids.

An apartness relation on a set A is a binary relation] on A satisfying three
properties: irreflexivity, symmetry 3 and cotransitivity. It is implemented in Agda
as a dependent record which takes A and] as parameters and whose fields postulate
the three required properties:

2 All the code described in this paper is freely available from the git repository: https://github.com/

GuillermoCalderon/ProjectiveGeometryInAgda

3 In fact, symmetry it is not required because we can derive it from the other two properties. However,
symmetry is usually included in the definition of apartness

2

Calderon

record IsApartness {a b}{A : Set a}
(_]_ : A ! A ! Set b) : Set (a t b) where
field

irreflexive : 8 {x} ! ¬(x] x)
symmetry : 8 {x y} ! x] y ! y] x
cotransitivity : 8 {x y} z ! x] y ! z] x] z] y

In order to obtain a definition as general as possible, we consider that A belongs
to the universe Seta for a generic level a. Analogous assumptions are adopted for
all objects in our formalization. We will not give details about levels in the rest of
this paper. The reader unfamiliar with universe polymorphism [20] in Agda can just
ignore them without loss of understanding. Note that some arguments are declared
as implicit (the ones enclosed between curly brackets). Implicit arguments have a
nice property: in most cases we can omit these arguments and Agda will try to infer
them from the context. We use implicit arguments very often in our implementation.
We will not explain why some arguments are declared as implicit and others are not.
In general, it is decided by some sort of heuristics given by practice.

Equality. We define the equality relation ⇡ as the negation of apartness: x ⇡ y ⌘
¬(x] y). This approach is slightly different from the one adopted in most axiomatic
definitions of projective geometry ([7,15,24]) where the equality is a primitive con-
cept and the relationship between equality and apartness is given by an additional
axiom (tightness): if ¬(x] y) then x = y . The converse of tightness follows from
irreflexivity. Thus, a logical equivalence is established among equality and the nega-
tion of apartness. By simplicity, we obtain this equivalence defining the equality
relation as an alias of not-apartness (without affecting the system as a whole) As
expected, ⇡ is proved to be an equivalence relation.

Setoids. A setoid is a pair hA,]i where A is a set and] an apartness relation on
A 4 :

record Setoid] a b : Set (suc (a t b)) where
field

{Carrier} : Set a
] : Carrier ! Carrier ! Set b
isApartness : IsApartness _]_

open IsApartness isApartness public

Relations on Setoid. In order to work with setoids, we need to lift some set
based operations on setoids. This process consists in the definition of a record
which contains a field representing the operation at the level of the carriers together
with another field that asserts the compatibility of the operation with the apart-
ness/equality relation. In the following code, h_i denotes an operator which returns
the carrier of a setoid.

4 We use the name Setoid] standing for an apartness based setoid. The identifier Setoid is preserved to
denote a classical setoid such as it is defined in Agda standard library.

3

Calderon

record IsRel] {a1 b1 a2 b2 c}
(S1 : Setoid] a1 b1)(S2 : Setoid] a2 b2)
(R : h S1 i ! h S2 i ! Set c) :
Set (a1 t b1 t a2 t b2 t c) where

field
sound : 8 {a b c d}

! Setoid]._⇡_ S1 a b
! Setoid]._⇡_ S2 c d
! R a c ! R b d

record Rel] {a1 b1 a2 b2} c
(S1 : Setoid] a1 b1)(S2 : Setoid] a2 b2)
: Set (suc (a1 t b1 t a2 t b2 t c)) where

field
R : h S1 i ! h S2 i ! Set c
isRel : IsRel] S1 S2 R

open IsRel] isRel public

Equality and Rewriting. The field sound of binary relations on setoids, give
places to a method to construct proofs by substitution of equals for equals preserving
the relation (also known as rewriting). If _ ./ _ is a binary relation between setoids
and we have a proof of a1 ./ b1 and proofs of a1 t a2 and b1 t b2 then we obtain a
proof of a2 ./ b2.

We introduce a couple of operators which allow us to mimic a very common
pattern used in informal mathematical notation. For instance, the expression P =
Q 2 A = B stands for a proof that P 2 B, provided we have proofs of P = Q,
A = B and Q 2 A.

We implement two operators for rewriting which apply substitution over the left
(h_i(_) and right (_)h_i) arguments of the relation as follows

h_i(_ : 8 {a1 a2 b} ! a2 ⇡ a1 ! R a1 b ! R a2 b
h a2⇡a1 i(Ra1b = sound (sym a2⇡a1) refl Ra1b
_)h_i : 8 {a1 a2 b} ! R b a1 ! a1 ⇡ a2 ! R b a2
Rba1)h a1⇡a2 i = sound refl a1⇡a2 Rba1

We need to work with several setoids at the same time. In order to overload
the appartnes operators for different setoids, we use an Agda feature called instance
arguments 5 . The idea is rather simple: we can open the module Setoid] with a
special directive: open Setoid] {[...]}. This directive allows us to access all the
operations of the module Setoid] and we can omit the particular instance argument
which will be inferred by Agda from the context by a special instance resolution
algorithm [5].

5 Instance arguments of Agda can be seen as an equivalent of Haskell type class.

4

Calderon

3 Representing the Projective Plane

In this section, we describe the implementation in Agda of the system of axioms of
projective geometry according to [15].

Point, Lines and Basic Relations. The basic objects of projective plane geome-
try are points and lines which are setoids; i.e. they are equipped with an apartness
relation. In addition, we have the incidence relation (2) and the outside relation
(62). Both relations are assumed to be compatible with apartness.

We start defining a record IsProjectivePlane which constitutes the main struc-
ture of our formalization of projective geometry.

record IsProjectivePlane {a b c d e}
{ Point] : Setoid] a b }
{ Line] : Setoid] c d }
(Incidence Outside : Rel] e Point] Line])
: Set (a t b t c t d t e) where

The names Incidence and Outside will be soon forgotten since we will use the
raw relations 2 and 62 at the level of the carriers. The first step is to give some
convenient definitions that allows we easily access the components of the structure.

Point = h Point] i
Line = h Line] i
2 : Point ! Line ! Set e
2 = Rel].R Incidence
/2 : Point ! Line ! Set e
/2 = Rel].R Outside

Outside Relation. In [15] and [7] the outside relation is defined positively (i.e.
without negation) from the incidence relation and point apartness: P 62 l ⌘ (8Q)(Q 2
l) ! P] Q. We take a different approach in our formalization: we do not give an
explicit definition of the relation outside. Instead, we add an axiom (C0) assert-
ing that P 62 l) (8Q)(Q 2 l) ! P] Q. The converse of this implication is not
postulated but it can be proved using the others axioms 6 .

3.1 Axioms for Projective Plane

In this section we begin the description of the axioms of a projective plane which
are represented as fields of the record IsProjectivePlane.

Axiom C0 was explained in the previous section:

C0 : 8 {P l} ! P /2 l ! (8 {Q} ! Q 2 l ! P] Q)

A first group of axioms establish the existence of a line and an external point
(axiom C1 of Mandelkern). These axioms exclude the possibility of trivial cases of
projective plane

6 However, the converse direction of the equivalence it is never used in our implementation.

5

Calderon

P0 : Point
l0 : Line
P0 /2l0 : P0 /2 l0

The next group of axioms (C2 and C3) express conditions of existence and
uniqueness for the line passing by two distinct points and the dual (a point on
two distinct lines).

Here, the relation of apartness becomes essential to assure the existence of a line
passing by two distinct points.

join : 8 {P Q : Point} ! P] Q ! Line
joinl : 8 {P Q} {P]Q : P] Q} ! P 2 join P]Q
joinr : 8 {P Q} {P]Q : P] Q} ! Q 2 join P]Q
unq-join : 8 {P Q} (P]Q : P] Q)

! 8 {l} ! P 2 l ! Q 2 l ! l ⇡ join P]Q

A function join is given, which receives two points and a proof of the apartness
of them, and returns a line (existence). The functions joinl and joinr allow to prove
that the join of two points effectively pass through them. Finally, the function unq-
join asserts that all lines passing thorough two points are equal to the join of these
points.

Note the difference with the traditional notation PQ to represent the line passing
by the points P and Q. In our implementation this line is denoted by the expression
(join P]Q), where P]Q is a proof that P and Q are distinct.

We define analogously the functions meet, meetl, meetr and unq-meet which
represent the dual part of the family of join operations.

A few axioms are formulated in order to rule out too simple models of projective
plane (C4). Then, it is assumed the existence of three distinct points on any line:

point1 point2 point3 : Line ! Point
2-point1 : 8 l ! point1 l 2 l
2-point2 : 8 l ! point2 l 2 l
2-point3 : 8 l ! point3 l 2 l
point-i]j : 8 l ! point1 l] point2 l

⇥ point1 l] point3 l
⇥ point2 l] point3 l

A lot of propositions can be inferred from the axioms above if we were working
using classical reasoning. Several of these conclusions are not constructively valid.
Therefore, it is necessary to add some other axioms in order to obtain a useful system
and at the same time, preserving its constructive foundation. We keep Mandelkern’s
denomination for these axioms.

Axiom C5 permits to infer two lines are distinct if a point belongs to one of the
lines and is outside to the other. In turn, C6 establish a strong relation between
62 and 2. The last axiom C7 provides another view about the uniqueness of the
intersection of two lines, but involving 62 instead of 2. It has the particularity that
its conclusion is a disjunction

6

Calderon

C5 : 8 {l m P} ! P 2 l ! P /2 m ! l] m
C6 : 8 {P l} ! ¬ (P /2 l) ! P 2 l
C7 : 8 {l m P} ! (l]m : l] m) ! P] meet l]m ! P /2 l] P /2 m

The converse one of C6 is a valid proposition and it is easily proved. However,
the contrapositive of C6 (i.e : ¬(P 2 l) ! P 62 l) is not constructively valid.

3.2 Comparing with other Axiom Systems

Since the seminal work of Heyting [7], several different systems were given to define
projective geometry in an acceptable constructive way. In particular, we investigate
the relationship between our formalization (mostly based on [15] which in turn is
similar to Heyting’s formulation) with the ones given by von Plato [24] and van
Dalen [22].

Von Plato system defines a core for all the geometries which is called apartness
geometry. In this approach all the usual negative relations are considered as primitive
and positive. Then, the relations of apartness (for points and lines) and the outside
relations are considered as given and the relations of equality and incidence are
defined as the respective negations of these primitive relations. The collection of
axioms are very simple and symmetric. Several of them, have disjunctive conclusions.

We give a formal proof that every projective plane as we define in Section 3
constitutes an apartness projective geometry in the sense of von Plato. The converse
requires to add to von Plato system some axioms postulating non-degeneracy con-
ditions (like axioms C1 and C4 of Mandelkern). With this addition, we formalize
the correspondence of a projective geometry à la von Plato with a Mandelkern’s
projective plane.

On the other hand, van Dalen describes an axiom system for projective geometry
where the only primitive relation is outside (62). All the other binary relations of
the system are defined in function of the referred outside relation. We implement
the proof of equivalence of the van Dalen’s system with ours.

We consider these equivalences very important and useful, because allow us to
work freely with different collections of axioms. Our implementation of each system
of axioms is represented as a dependent record in Agda. Thus, we can make available
any of the systems by importing the respective module.

4 Equational Reasoning with join and meet

The functions join and meet permits the construction of complex expressions repre-
senting points. Often, we find different expressions (compositions of join and meet)
denoting the same object (point or line). The cause of this fact relies on the unique-
ness properties expressed by the functions unq-join and unq-meet. Below, we present
some algebraic rules expressing equalities between expressions constructed with join
and meet. We use a simplified notation: ABq denotes an expression of the form (join
A B q) where q is a proof of A] B. The sub index q is omitted when it is irrelevant.

We have dual rules for meet. We implement simple functions which allows to
prove these algebraic equations in a rather direct manner. An interesting feature of
this implementation is that all the arguments of these function are implicit. Thus,

7

Calderon

ABp t ABq
tjoin

AB t BA
join-comm

A1 t A2 B1 t B2

A1B1 t A2B2
join-cong

A1 t A2 B1 t B2

A1B1 t B2A2
join-flip-cong

Fig. 1. Rules for equational reasoning

we can combine the functions in a very direct way, guided by the simple intuition of
the rules.

These rules of equational reasoning together with the rewriting operators for
setoids constitutes one of the most important tool to write proofs in our implemen-
tation.

5 Propositions and Duality

Once we have defined the previous modules with the definitions of projective planes
and the libraries for setoids and equational reasoning, we can construct the proof
for several propositions such as the ones appearing in Section 2 of [15] and most
traditional books. Playing with the system, one discover soon that most proofs fol-
low the pattern of establishing a relation among certain geometric objects (any of
the basic relations, apartness, equality, incidence and outside). Thus, the axioms
required are invoked, and usually we need to apply rewriting in order to obtain the
relation involving the correct objects. Overloaded operators for rewriting and the
combinators for equality described in Section 4 are extensively used in the construc-
tion of proofs in our system. In addition, these operators can work together with
the operators of the library EqReasoning of Agda ([18], [1]) providing a nice syntax
to write some proofs of equality.

We provide also a formal proof of the principle of duality considered one of the
most typical results of projective geometry. The classic formulation of this principle
express that: For every valid proposition, it is also valid the dual proposition which
is obtained from the first one swapping the words “line” by “point”, “pass” by “lie”
and so on. This informal statement seems rather a meta-theorem than a geometric
proposition. However, it can be formalized in a very succinct way like a function
among projective planes.

duality : 8 {a b c d e} {Point] : Setoid] a b} {Line] : Setoid] c d}
{2 /2 : Rel] e Point] Line]}

! IsProjectivePlane 2 /2
! IsProjectivePlane (flip] 2) (flip] /2)

The function flip] interchange the order of the arguments of a binary relation
on setoids. The proof of the principle of duality indicates how to construct a dual
projective plane from a given projective plane.

8

Calderon

Fig. 2. A harmonic configuration for C with respect to A and B

6 Fano and Desargues

In planar projective geometry, the classic theorems of Fano and Desargues can not
be proved. Therefore, we can assume them as new axioms. More precisely, we define
extensions of the previously defined projective plane by adding fields representing
these axioms.

Fano axiom is about quadrangles, and Desargues has to do with triangles. Quad-
rangles and triangles are instances of a kind of figure known as complete n-point. We
define these concepts in our implementation providing modules with the necessary
tools to work comfortably with them.

We define a structure FanoProjectivePlane as an extension of the structure Pro-
jectivePlane by the addition of a new field that represents the Fano axiom. In turn,
another structure Desarguesian is obtained as the extension of FanoProjectivePlane
with a field corresponding to Desargues axiom. The principle of duality which was
proved for projective plane, is generalized for the new defined structures by giving
the proofs for the dual versions of Fano an Desargues axioms. Although conceptu-
ally simple, these proofs are rather extensive and verbose (about a thousand of lines
of Agda code). A number of interesting mathematical machinery is implemented in
these modules in order to work appropriately with the symmetry and circularity of
the kind of figures involved. We do not provide a detailed explanation to this part
of our implementation which can be consulted in the repository by the interested
reader.

7 Harmonic Conjugates

Harmonic conjugates can be defined in Euclidean geometry in terms of metric con-
cepts (the cross ratio). von Staudt [25] was the first one to propose a synthetic
definition based in quadrangles. We follow the definition given in [15] which better
reach the required constructivity since the definition is uniform over all the points
of the base line.

7.1 Definition of Harmonic Conjugate

Assume two distinct points A and B. Let C be any point lying on the line AB.
A harmonic configuration of C with respect to A and B is determined by a line l

passing by C and different to AB, and a point R outside l and AB.
From the line l and the point R we can construct a point D which is called

9

Calderon

the harmonic conjugate of C with respect to A, B. The method to obtain the
conjugate of C proceeds as follows: Let Q be the intersection of l and AR. Let P

be the intersection of l and BR. Let S be the intersection of AP and BQ Then,
the harmonic conjugate of C with respect to A and B (relative to the configuration
(l, R)) is the point D = RS \AB.

In order to have a valid definition, we must show that all the steps are well
defined, i.e. all joins and meets are applied over different points and lines. In our
formalization, this is forced by the Agda type checker since the functions join and
meet require as argument a proof of apartness of the objects involved. For instance,
to refer to the line AR we need a proof of A]R and to consider the intersection of l
and AR we need a proof of l]AR and so on.

Harmonic Configuration. Given A and B distinct points and C a point be-
longing to AB, a harmonic configuration for C is the collection of lines and points
constructed (following the method described above) from a particular choice of l and
R in order to obtain the point D, (the harmonic conjugate of C with respect to A

and B).
We represent a harmonic configuration in Agda, as a record:

record HarmonicConf
{A B} {A]B : A] B} {C}
(C2AB : C 2 join A]B) : Set (a t b t c t d t e) where

field
l : Line
C2l : C 2 l
l]AB : l] join A]B
R : Point
R/2l : R /2 l
R/2AB : R /2 join A]B

The code above shows the fields of the record HarmonicConf, namely the line l

and the point R together with the conditions they have to fulfill. In the same module
HarmonicConf we define the points and lines required to construct the harmonic
conjugate as well as the necessary proofs of apartness for each join and meet invoked.
In particular, the points of the quadrangle (see below) are defined this way:

P Q S D : Point
P = meet RB]l
Q = meet RA]l
S = meet AP]BQ
D = meet RS]AB

Representing the Harmonic Conjugate. According to the previous develop-
ment, the harmonic conjugate is defined as a function which returns a point from a
given configuration:

10

Calderon

HConjugate : 8 {A B C : Point}{A]B : A] B}{C2AB : C 2 join A]B}
! HarmonicConf C2AB ! Point

HConjugate HC = HarmonicConf.D HC

Note the only explicit argument is the structure (record) corresponding to the
harmonic configuration. Inside this record we give the construction of the point D

which is the field selected for the configuration. All the other arguments are implicit,
and they will be inferred from the argument HC.

Quadrangles and Harmonic Conjugate. It is usual to define the harmonic con-
jugate by using a quadrangle. In such definition, a quadrangle PQRS is constructed
with two diagonal points matching A and B and one of the sides determining the
other diagonal passing by C. The point D is determined by the intersection of the
remaining side with AB. This construction, is only possible when C does not co-
incide with A nor B. For this reason, we follow the definition given in [15] where
we do not need to determine whether C is equal to A or B in order to define the
harmonic conjugate.

7.2 Existence of the Harmonic Conjugate

The existence of the conjugate harmonic is in general admitted without any proof
in the standard literature. In accordance with our constructive approach we have to
provide a method to construct at least one harmonic configuration from any given
points A, B and C.

9HConf : 8 {A B C : Point}{A]B : A] B}
! (C2AB : C 2 join A]B)
! HarmonicConf C2AB

By axiom C4 dual, we can obtain two distinct lines passing by C. By cotransi-
tivity, at least one of these lines is distinct from AB. Then, we have the required
line l passing by C and distinct from AB. The existence of the point R, outside
both AB and l, is harder to prove. It follows also by an appropriate composition of
axiom C4 and cotransitivity.

7.3 Uniqueness of Harmonic Conjugate

From the definition above, the conjugate of a given point with respect to A and B,
will depend on the line l and the point R chosen (i.e. the configuration considered).
One of the main results in projective geometry is that the harmonic conjugate does
not depend on the configuration chosen. In other words, if we consider two config-
uration HC and HC0 the conjugates D and D0 obtained using respectively HC and
HC’ are equal.

uniqueness : (A B C : Point)
! (A]B : A] B)
! (C2AB : C 2 join A]B)
! (HC HC’ : HarmonicConf C2AB)
! HConjugate HC ⇡ HConjugate HC’

11

Calderon

The construction of this proof is the main goal of this paper. We are going
to explain the general scheme used in the definition of this formal proof and we
illustrate some parts with more details.

7.3.1 Constructive Proofs by Cases.
It is very common, in classic mathematics, to construct a proof by cases which derive
from certain variant of the principle of the Law of Excluded Middle (LEM). If we
prove a proposition � from the assumption and we also prove � from assumption
¬ , then we have a proof � (under no assumptions). This method it is not valid in
general if we are working constructively and do not accept LEM as a general valid
principle. However, in the particular case where we want to prove a contradiction
(?) we can proceeds as follows: From the assumption �, to prove a contradiction,
and from the assumption ¬�, to prove a contradiction. Then we have a proof of ?
(without assumptions). The first contradiction gives a proof of ¬� and cancels the
assumption �. The second contradiction takes this proof of ¬� and gives a proof of
the absurdity (?).

This method can be generalized for an arbitrary number k of premises which are
canceled by contradiction in sequence. Let �1, . . . ,�k be a collection of assumptions.
We have to provide (k + 1) proofs of ? in sequence. In each step we cancel a
premise by negation. Finally, we obtain a proof of ? independent of the assumptions
�1, . . . ,�k.

In the next section, we explain how to apply this pattern of reasoning to the
construction of a proof for uniqueness of the harmonic conjugate.

7.3.2 The Proof of Uniqueness
In this section, we explain how the proof of uniqueness was constructed and formal-
ized in Agda. This is a rather extended proof which considered a lot of different
cases in order to cover all the possibilities 7 .

The proof takes as input the points A, B and C as defined above and two
harmonic configurations HC and HC’. Let D and D0 be the harmonic conjugates
with respect to HC and HC’ respectively. We want to construct a proof of D t D0

which is defined as the negation of D] D0. In other words, a proof of D t D0 is
obtained by assuming D] D0 and deriving a contradiction from this assumption.

In addition to the global assumption of D] D0 we incorporate several additional
assumptions which allows us to prove a contradiction by cases as explained in the
previous section. These assumptions has to do with how distinct the configurations
HC and HC’ are.

For instance, we will describe the proof for the case where the two configurarion
are completely disjoint.

We need eleven assumptions in order to configure this case:
C] A , C] B , l] l0 , R] R0 , R0 62 RB , R0 62 RA , SP] S0P 0 , SQ] S0Q0,

O 62 RS , O 62 R0S0 , S] S0.
Note that all the premises are expressed as apartness (_]_) or outside (_ 62 _)

7 The code complete of the proof constitutes a number of files (about 15) which includes about 5000 lines
of code.

12

Calderon

Fig. 3. Two harmonic configurations. The case of completely disjoint quadrangles

relation. This is important, since from the negation of A] B we can infer A t B

(by definition) and the negation A 62 r entails that A 2 r (by axiom C6).
The first and second assumptions ensure the existence of the quadrangles for

both configurations. The condition l] l0 permits to deduce that P] P 0 and Q] Q0.
From R0 62 RB , and R0 62 RA we can prove that the triangles PQR and P 0Q0R0

are perspective from the axis AB. By Desargues converse, PQR and P 0Q0R0 are
perspective from a center. Let be O = PP 0 \QQ0 the center of perspectivity.

The triangles PQS and PQS are also perspective from the axis AB (using the
assumptions SP] S0P 0 , and SQ] S0Q0). By Desargues converse, these triangles are
perspective by a center. It is immediate to see that this center is equal to O. We can
conclude that the triangles PRS and P 0R0S0 are perspective from the center O (the
assumptions O 62 RS, O 62 R0S0 and S] S0 are required) Applying now Desargues,
these triangles are also perspective from an axis. We can easily determine that this
axis is the line AB and hence D ⇡ D0 = RS \ R0S0. From the general assumption
D] D0, we obtain the contradiction for this case.

Just this case is usually presented in most books about geometry projective as a
complete proof of uniqueness of harmonic conjugate. Moreover, some of the required
premises (like those involving the point O) are omitted.

Veblen and Young [23] present a proof like the above described. They argue that
for the case where a vertex or side of HC coincides with a vertex or side of HC0, we
can consider a third configuration HC00 whose vertexes and sides are distinct from
those of HC and HC0. Hence, we can apply the previous proof to the configurations
HC and HC00 and then to the configurations HC0 and HC00. By transitivity, it is
deduced the equality of D and D0. If we want to formalize this argument, we have
to give a method to construct this third configuration. Moreover, we should provide
a method for each of the several cases where one of the previous hypothesis fails.
This task seems to be rather complex in the context of a constructive approach 8 .

In turn, Coxeter’s book [4] presents only the proof for the case of disjoint con-
figurations and the proof for the other cases are left to the reader.

8 Note the required method to obtain a third configuration becomes trivial if we consider a plane embedded
in a projective space.

13

Calderon

With respect to constructive approaches, Heyting [7] gives a quadrangle based
definition of harmonic conjugates in the context of projective geometry of the space,
providing a construction which only applies to points different from the base points
(A and B). At the same time, the proof given by Mandelkern [15], is not rigor-
ous enough in the construction of the sequence of contradiction and it has some
inaccuracies [16].

In addition to the proof based upon the eleven assumptions, in our implementa-
tion, we have considered a lot of more cases negating the assumptions in sequence
one at a time. For each case, we have to obtain a contradiction. The contradiction
for some cases is rather evident, while for others it is required a considerable effort.
Mostly, we obtain the required result by a number of applications of Desargues just
as we do for the case of disjoint configurations. For a number of cases it is possible to
take advantage of the symmetry of the configurations and to reuse the proof already
given for an analogous situation.

8 Conclusion and Related Work

We described a formalization of a basic fragment of constructive projective plane
geometry which covers: representation of basic objects and relations, definition of
projective plane with its axioms, basic propositions of incidence, principle of du-
ality, definition of complete n-point, representation of Fano and Desargues axioms
and proof of duality, definition of the harmonic conjugate and proofs of existence
and uniqueness. The implementation has been restricted to use only valid meth-
ods from constructive mathematics. We implement the axiom system described in
[15] with some minor variants. In addition, the equivalence with other well-known
constructive axiom systems was proved.

The proof of uniqueness of the harmonic conjugate turns out to be a quite com-
plex proof when carried out just by using constructively valid methods. In fact, we
could not find a complete and rigorous presentation of this proof in the literature.
Therefore, a formal and automated verified construction of such a proof constitutes
a major contribution o this paper.

We based our development on the programming language features of Agda rather
than on the proof-assistant ones. In particular, we have not constructed proofs by
tactics. We have taken advantage of a number of important features of the language.
Modules and dependent record types have played an important role allowing us to
implement setoids as an abstract data type and to view lines and points as instances
of this ADT. In addition, the mechanism of implicit instances has provided the
ability for overloading the operators of this ADT. We almost did not need any
additional data type: only natural numbers and finitary sets are used in order to
provide the definition of complete n-point. With respect to the logic involved in the
implementation: we have used the standard connectives of first order intuitionistic
logic, namely implication, negation, disjunction, conjunction and quantifiers.

Induction and recursion have been rarely used along our implementation. This is
rather unusual for a formalization in type theory, but it is reasonable in a case where
the main objects are ADTs instead of inductively defined data types. Accordingly,
pattern matching is scarcely used (only to process disjunctions and finitary sets).

14

Calderon

One of the goals of our work has been the implementation of a framework where
one can easily construct proofs of projective geometry without using automatic tac-
tics. By “easily construct” we means to write formal proofs in a similar way as it is
done in mathematics textbooks. In other words, we want to reduce the complexity
of a formal proof compared with a paper proof. We have obtained very elegant and
simple proofs combining the operators provided by our implementation (e.g. rewrit-
ing, join-meet rules, eq-reasoning, circularity of configurations). However, some
proofs (namely: Desargues an Fano duals and unicity of harmonic conjugates) are
excessively verbose compared with their textbook versions. Some additional work
is required in order to reduce this complexity. We conjecture that an appropriate
redesign of some of the basic modules of our implementation would help to reach this
goal. Moreover, some kind of automatization would be useful to avoid boilerplate
code (e.g. proofs of equality for lines and points).

Related Work. To the best of our knowledge, there are no other formalizations of
geometry (of any kind) implemented in Agda.

There exists an early formalization written in Alf (an ancestor of Agda) [13] by
von Plato [24]. This is a very simple formalization of von Plato axiom system. A
more advanced implementation is [8] which formalizes von Plato constructive geom-
etry in Coq. These works only represent a small fragment of projective geometry
without cover advanced concepts such as Desargues theorem and harmonic con-
jugates. However, they use the same representation for line/point existence and
uniqueness: with functions join and meet defined as in our implementation. The
definition of apartness relation is also very similar.

If we restrict ourselves to projective geometry formalizations in type theory, we
should mention the work by Magaud, Narboux and Schreck [11,12]. They describe
Coq implementations of the basic concepts of synthetic projective geometry using
a tactic-based method to construct the proofs. They cover some complex theorems
like Desargues and the principle of duality. There are some points in common with
our formalization, namely the representation of the projective plane as a record and
the proof of duality carried out by providing a function among records. The main
and capital difference is that their formalization does not follow a pure constructive
approach since the incidence and equality relations are postulated to be decidable.

At last, we note that we are not aware of any formalization of projective geometry
covering the area of harmonic conjugates.

Future Work. This work is part of a more ambitious project consisting in a
complete formalization of constructive projective geometry. Future topics to cover
will be: projectivities and conics. In addition, there are a number of interesting
related problems to be investigated such as: the relationship of projective geometry
with affine geometry, i.e. the extension problem ([21], [14]); implementation of the
coordinatization of the projective plane; relation with algebraic models of projective
geometry like Grassman-Cayley algebra, geometric algebra, etc. [10].

Acknowledgments. I would like to thank Alberto Pardo and the anonymous
referees for their useful comments. I also thank M. Mandelkern for helpful comments
about his work on constructive projective geometry.

15

Calderon

References

[1] Agda developers, Agda standard library, http://wiki.portal.chalmers.se/agda/pmwiki.php/

Libraries/StandardLibrary, [Date Accesed: 2017-04-05].

[2] Beutelspacher, A. and U. Rosenbaum, “Projective geometry - from foundations to applications.”
Cambridge University Press, 1998, I-X, 1-258 pp.

[3] Birchfield, S., An Introduction to Projective Geometry (for computer vision), http://robotics.

stanford.edu/~birch/projective/ (1998), Date accessed: 2017.

[4] Coxeter, H. S. M., “Projective geometry,” Springer Science & Business Media, New York, 2003.

[5] Devriese, D. and F. Piessens, On the bright side of type classes: instance arguments in Agda, in:
Proceeding of the 16th ACM SIGPLAN international conference on Functional Programming, ICFP
2011, Tokyo, Japan, September 19-21, 2011, 2011, pp. 143–155.

[6] Herman, I., “The use of projective geometry in computer graphics,” Springer-Verlag Berlin ; New York,
1992, viii, 146 p. : pp.

[7] Heyting, A., Zur intuitionistischen axiomatik der projektiven geometrie, Mathematische Annalen 98
(1928), pp. 491–538.

[8] Kahn, G., Constructive geometry according to Jan von Plato, Coq contribution. Coq 5 (1995), p. 10.

[9] Klein, F., “Das Erlanger Programm,” 253, Akademische Verlagsgesellschaft Geest & Portig, 1974.

[10] Li, H., “Invariant algebras and geometric reasoning,” World Scientific, Singapore, 2008.

[11] Magaud, N., J. Narboux and P. Schreck, Formalizing projective plane geometry in Coq, in: Automated
Deduction in Geometry - 7th International Workshop, ADG 2008, Shanghai, China, September 22-24,
2008. Revised Papers, 2008, pp. 141–162.

[12] Magaud, N., J. Narboux and P. Schreck, A case study in formalizing projective geometry in Coq:
Desargues theorem, Comput. Geom. 45 (2012), pp. 406–424.

[13] Magnusson, L. and B. Nordström, The ALF proof editor and its proof engine, in: Types for Proofs and
Programs, International Workshop TYPES’93, Nijmegen, The Netherlands, May 24-28, 1993, Selected
Papers, 1993, pp. 213–237.

[14] Mandelkern, M., Constructive projective extension of an incidence plane, Transactions of the American
Mathematical Society 366 (2014), pp. 691–706.

[15] Mandelkern, M., A constructive real projective plane, Journal of Geometry (2015), pp. 1–42.

[16] Mandelkern, M., About the proof of uniqueness of harmonic conjugates, Personal Communication (by
email) (2017).

[17] Nordström, B., K. Petersson and J. Smith, “Programming in Martin-Löf’s type theory: an introduction,”
International series of monographs on computer science, Clarendon Press, 1990.

[18] Norell, U., “Towards a practical programming language based on dependent type theory,” Ph.D. thesis,
Department of Computer Science and Engineering, Chalmers University of Technology, SE-412 96
Göteborg, Sweden (2007).

[19] Norell, U., Dependently typed programming in Agda, in: Proceedings of TLDI’09: 2009 ACM SIGPLAN
International Workshop on Types in Languages Design and Implementation, Savannah, GA, USA,
January 24, 2009, 2009, pp. 1–2.

[20] The Agda Team, Universe polymorphism. The Agda wiki, http://wiki.portal.chalmers.se/agda/

pmwiki.php/ReferenceManual/UniversePolymorphism, [Date Accesed: 2017-07-03].

[21] van Dalen, D., Extension problems in intuitionistic plane projective geometry, I and II, Indagationes
Mathematicae , 66, Elsevier, 1963, pp. 349–368.

[22] van Dalen, D., ‘Outside’ as a primitive notion in constructive projective geometry, Geometriae Dedicata
60 (1996), pp. 107–111.

[23] Veblen, O. and J. W. Young, “Projective geometry,” 2, Ginn, 1918.

[24] von Plato, J., The axioms of constructive geometry, Annals of pure and applied logic 76 (1995), pp. 169–
200.

[25] von Staudt, K. G. C., “Geometrie der Lage,” Nürnberg, 1847.

16

Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Formalizing Abstract Computability:
Turing Categories in Coq

Polina Vinogradova

a,1
Amy P. Felty

a,b,2
Philip Scott

b,a,3

a School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada

b Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada

Abstract

The concept of computable functions (as developed by Gödel, Church, Turing, and Kleene in the 1930’s)
has been extensively studied, leading to the modern subject of recursive function theory. However recent
work by category theorists has led to a more conceptual and abstract foundation of computability theory–
Turing categories. A Turing category models the notion of partial map as well as recursive computation,
using methods of categorical algebra to formalize these concepts. The goal of this work is to provide a
formal framework for analyzing this categorical model of computation. We use the Coq Proof Assistant,
which implements the Calculus of (co)Inductive Constructions (CIC), and we build on an existing Coq
library for general category theory. We focus on both formalizing Turing categories and on building a
general framework in the form of a well-structured Coq library that can be further extended. We begin by
formalizing definitions, propositions, and proofs pertaining to Turing categories, and then instantiate the
more general Turing category formalism with a CIC description of the category which explicitly models the
language of partial recursive functions.

Keywords: Category theory, Turing categories, Computability, Formalization, Calculus of Inductive
Constructions (CIC), Coq proof assistant

1 Introduction

Traditional computation theory (Gödel, Turing, Kleene) originally aimed at cap-
turing the informal notion of computable functions over the natural numbers and
computable theories of real numbers (e.g. [17,10]). Even before Turing, Church’s
introduction of lambda calculus [2] attempted to capture certain properties of com-
putation in a broader sense, through manipulation of strings of symbols representing
function application and abstraction. It was subsequently shown that the numerical
(partial) functions computable by these various abstract formalisms for computation
coincided, thus suggesting the so-called Church-Turing thesis. Later independent
formalisms for defining numerical computation (e.g. Register Machines, Markov’s

1 Email: polina.vino@gmail.com
2 Email: afelty@uottawa.ca
3 Email: phil@site.uottawa.ca

c�2017 Published by Elsevier Science B. V.

Vinogradova, Felty, and Scott

algorithms, etc.) were shown to again lead to the same class of computable nu-
merical partial functions, lending yet more credance to the Church-Turing thesis.
Nevertheless, practical as well as theoretical computer science requires more than
just numerical computation: one has increasingly abstract theories of computation
over various data types, higher-order computation, computation based on various
programming language paradigms, newer paradigms of computation (parallel, prob-
abilistic, quantum) etc. Category theory appears to be both general and expressive
enough to be the tool of choice for modeling computation in these newer senses.

Many concepts of traditional recursion and computation theory have begun to be
e↵ectively analyzed categorically. This includes early fundamental work of Elgot on
flowchart semantics, and its connections with denotational semantics (cf. M. Arbib
and E. Manes [13]), to analysis of Church’s theories of lambda calculi (both typed
and untyped) in cartesian closed categories and associated higher-order categorical
logics ([11]). In a series of works of increasing categorical generality, beginning with
Longo and Moggi [12], Di Paola and Heller [15] and culminating in recent work
of Cockett and Hofstra [6], we see the beginnings of a new and direct categorical
development of the foundations of recursion theory

This paper is based on the thesis of the first author [19]. The model we study is
the category-theoretic formalism of Turing Categories, introduced by Cockett and
Hofstra [6]. Turing categories are a very general computational model, built from
a categorical analysis of partial maps in categories. The partial maps of a Turing
category arise as the computable maps of a partial combinatory algebra (PCA).
Moreover, recent work establishes criteria for determining when various complexity
classes of total maps can be made into a Turing category [3]. Thus the notion of
Turing category provides a robust, abstract framework for discussing computation
over a wide range of settings.

Our study of the Turing category computation model takes the form of building
a type-theoretic formal language description (formalization) of the relevant con-
cepts. The concepts we have selected to formalize lay the groundwork for (for-
mally) proving abstract interpretations of standard theorems in recursion theory.
The key motivation behind this approach is the level of organization, consistency,
and guaranteed correctness it provides in working with proofs and definitions for
which informal formulations may omit important and interesting details.

Turing category theory can be viewed as an (up until now) informally-presented
mathematical framework that can be used to describe formal computation. As
computation on a physical computer is a precise procedure, it seems natural to verify
that a formal description of it exactly fits the selected categorical model. This is the
motivating idea and the main objective of this work. There is not a huge amount
of work done in this direction of research; specifically, in formalizing a category
as an instance of an abstract computational model. Furthermore, we choose to
work in the Coq Proof Assistant, with the Calculus of (co)Inductive Constructions
(CIC) as its underlying formal language. Thus, we are using intuitionistic logic to
build the proofs and definitions in this formalization. This further di↵erentiates this
development from traditional recursion theory, and adds interesting constructivist
information to our proofs. For example, to verify if f : A ! B is a function, we
must confirm that for each proof that x 2 A, we can prove f(x) 2 B.

2

Vinogradova, Felty, and Scott

There have been previous attempts to formalize certain aspects of computation,
both as categorically abstracted concepts and as direct formalizations of partial or
total computation. Our project, in fact, builds on an existing constructive formal-
ization of partial recursive functions in Coq [21], and makes use of the S

m
n theorem

proved within the resulting language. There are other formalizations of traditional
computation, such as primitive recursion in [14], a formalization of computable
functions done directly using lambda abstractions (rather than a specific proof as-
sistant, although the project was motivated by considerations of NUPRL) [8], and
formalizations done in di↵erent proof assistants such as HOL [20] (this formaliza-
tion is done using non-constructive logic). But we stress that our formalization (in
Coq) is based on the novel structure of Turing categories, and an associated theory
of partial maps in categories.

As far as formalization of categorical abstractions of computational structures
goes, a formalization (using Coq) of cartesian closed categories, which have been
previously used to model total computation, is found in [16]. Furthermore, a for-
malization of a categorical partiality structure which represents the same notion
that we use as the partiality structure in Turing categories has also previously been
done using the Agda proof assistant [1].

We start from a library for general category theory developed by Timany and
Jacobs [16], designed to take advantage of advanced features in Coq 8.5 such as
type classes and universe polymorphism. This library successfully develops many
of the basic concepts, and thus we chose to adopt the style of definitions and for-
malization strategy used in this library. With this library as a starting point, we
specify the mathematical definitions found in the framework of the Turing Cate-
gory computation model, as well as abstract versions of other types of structures
naturally occurring in the traditional computation model. We then formally prove
(the abstract versions of) a number of results from traditional recursion theory.

In addition to formalizing the categorical concepts, we formalize several exam-
ples of categories. These examples provide validation of our formalization approach
and formalized results. They also provide a mechanism to formally study these
specific example categories. Our main example is the formalization of traditional
computation on the natural numbers and the categorical interpretation of all the
structure found therein, illustrating that these indeed conform to the Turing cat-
egory model formalism. We base our formalization of traditional recursion theory
on a formalization due to Zammit [21].

Our Coq scripts, compilation instructions, and a link to the library we build on is
available at: https://github.com/polinavino/Turing-Category-Formalization.

2 Our Formalization

We divide our explanation of the formalization according to the Coq files we have
built. The section corresponding to each file discusses definitions and their formal
encoding as well as the challenges of reconciling the di↵erences between them.

Restriction. In order to model partial computation using category theory,
we need to first axiomatize partiality in a category. In a Turing category, this is
done in terms of a restriction combinator [7]. A restriction combinator takes a map

3

Vinogradova, Felty, and Scott

f : A ! B to an idempotent f : A ! A in a way that satisfies certain rules, and in a
sense axiomatizes the notion of “domain” of f . In addition to a partiality structure,
a category wherein we are able to axiomatize computation requires a version of
cartesian product structure which interacts well with the restriction structure. The
partial versions of products and terminal objects are called restriction (or partial)
products and restriction-terminal objects, respectively. A category which admits
these structures is called a cartesian restriction category.

Following the style of the Coq category theory library we have selected, we
use type classes to formalize categorical notions. Type classes are a versatile and
convenient way to encapsulate terms and propositions about them into a single term
representing its informal counterpart, with a number of features particularly useful
for reasoning about category theory. We have also formalized and proved a number
of results about cartesian restriction structure, including:

(i) A restriction terminal object in a cartesian restriction category is a (true) termi-
nal object in its total subcategory, and a corresponding result about restriction
products [6];

(ii) Restriction products in a cartesian restriction category are (true) products in
its total subcategory [6];

(iii) A cartesian category with f = 1 for all maps f is a cartesian restriction cate-
gory [6];

(iv) In an embedding-retraction pair (m, r), m is a total map [7];

(v) A ranges and retractions lemma from [18].

PCA and CompA. The underlying computational structure in a Turing cate-
gory is a non-associative algebra called a partial combinatory algebra (abbreviated
PCA), which consists of a pair (A, •) of an object A 2 C and a map A ⇥ A ! A

in a cartesian restriction category C, as well a combinatory completeness condi-
tion that (A, •) must satisfy in this category. Given an object A in an arbitrary
restriction category C, the full subcategory of all objects of the form A

n is de-
noted Comp(A). We have formalized the definition of a PCA, as well as Comp(A)
and Split(Comp(A)) (the Karoubi envelope of Comp(A)) as cartesian restriction
categories. Furthermore, in the process, we have discovered additional conditions
required to show intuitionistically that Split(Comp(A)) is a cartesian restriction
category.

Turing. A Turing category is a category that contains a special kind of structure
that models computation. A category T is Turing if it contains an object A 2 T,
called a Turing object, as well as a morphism • : A ⇥ A ! A, called a Turing
morphism, such that each map in T factors via • in a specific way, similar to
the factorization of maps within a cartesian closed category (CCC) [11]. We have
formalized Turing structure along with a number of results about it, including:

(i) Every object in a Turing category is a retract of a Turing object [6];

(ii) An object B in a Turing category with Turing object A is Turing if and only
if it is a retract of A [6];

(iii) A CCC with trivial restriction structure and an object A of which every object

4

Vinogradova, Felty, and Scott

is a retract is a Turing category;

(iv) The halting domain is m-complete [6];

(v) An equivalent characterization of Turing categories in terms of the Turing
morphism and object embeddings [6].

In addition, we have formalized the relationship between a Turing category T
with a Turing object A and the related categories Comp(A) and Split(Comp(A)).
These categories embed in the following order: Comp(A) ✓ T ✓ Split(Comp(A)).

Range. Range structure in a category can be expressed in terms of another
type of combinator which (whenever it exists in a category) is in a sense dual to the
restriction combinator [5]. The range combinator takes a map f : A ! B to a map
f̂ : B ! B, and, as with the restriction combinator, satisfies a number of axioms.
It is related to the notion of open maps in a category, in that whenever all maps in
a given category are open, it is a range category. We have chosen to formalize this
particular abstraction because in the process of formalizing the motivating exam-
ples, it became apparent that representing partiality using a total formal language
presented one of the biggest challenges as well as one of the greatest curiosities. We
have formalized a number of results regarding the interactions between range struc-
ture and embedding-retraction pairs, as well as a criterion for a Turing category to
admit cartesian range structure [18].

Par Cat. The category Par (of Sets and partial maps) is the motivating example
for the categorical structure discussed above, including cartesian restriction and
cartesian range structure, but not including Turing or PCA structure. Due to the
total nature of computation in CIC, it is impossible to directly represent a partial
map. For this reason, we must define the type of the set of all partial maps A ! B

quite di↵erently from the type of all total maps A ! B in the category Set (i.e., A
-> B in Coq). A partial map from A to B is a pair consisting of a domain predicate
P : A -> Prop together with a map of type forall x:A, P x -> B, which takes
two arguments: an “element” x of the set A, and a proof of the proposition P x.

Having defined the type of partial maps in this way, we proceeded to define the
formal version of Par, which we call Par Cat, as an instance of the Category type
class from the original Coq library (i.e. define the required objects, morphisms and
proofs of associativity, etc). Following a similar format, we have also instantiated
Par as a cartesian restriction category and a cartesian range category (i.e., defined
all the required maps, objects, and completed the accompanying proofs).

CompN Cat. The category Par contains a subcategory of maps that are partial
recursive, i.e., computable by a map which can be expressed in terms of the partial
recursive constructors (zero, successor, projection, recursion, substitution and min-
imalization [9]). We use this definition of formal computation as the basis for our
formalization of the category of computable maps. We build our subcategory using
an existing formalization of this presentation of computation as well as the proof of
the S

m
n theorem completed using this definition [21].

This formalization gives the definition and the semantics of the language of par-
tial recursive maps separately. We define the language constructors as an inductive
type prf in Coq, while the semantics are given as an inductively-defined relation,
whose header is:

5

Vinogradova, Felty, and Scott

Inductive converges to : prf -> list nat -> nat -> Prop

where (convergest to f prf ln n) is provable whenever, informally, the partial
recursive function f prf applied to the list of natural numbers ln outputs n. Note
that this “output” is unique, so we are able to build a partial map in the Par Cat

sense, described above, which corresponds to a given prf term.

Now, we formally consider a partial map withm components as a map in the cat-
egory of partial recursive maps whenever there is a proof that each of its components
is Kleene-equal to a prf computation. This category inherits cartesian restriction
structure defined in the larger category, Par Cat; however, we have additionally
defined a Turing object (i.e., the natural numbers) and proved that the necessary
diagrams commute (as maps in the larger Par Cat category), thus demonstrating
that it is indeed a Turing category.

3 Discussion and Future Work

The framework we have built develops the tools to study abstract recursion formally.
It has the advantage that we are not required to model partial functions using total
functions or relations (or total functions built using relations) in order to study
partial recursion using (strongly normalizing and intuitionistic) CIC.

As with most proofs in category theory, informal results about Turing, restriction
and range categorical structure do not require reasoning using the law of excluded
middle, or any other application specifically of classical logic reasoning. Thus, proofs
of the results we chose to formalize hold up in a constructive setting.

While most of the formal results we have proved confirm what has already
been shown informally, formalization also gives us the ability to find omissions in
the informal definitions, proofs and propositions. For example, in the process of
formalizing a result about ranges in Turing categories, we saw that we were not
able to directly express the result in terms of range structure, and had to instead
formulate and prove a very closely related result in terms of open maps.

In the formalization of partial maps, however, it is not always the case that we
can build definitions (and therefore proofs) directly following the informal strat-
egy. For example, one major di↵erence between our formal presentation of partial
maps and the usual informal one is that a partial map f from A to B takes two
arguments, an element x : A and a proof of membership of x in the domain of
f (as discussed earlier), instead of the usual one argument, and this is expressed
using dependent types. Now, because of this, in order to prove equality between
partial maps formally, we require a stronger version of the (dependent) functional
extensionality axiom as well as the proof irrelevance axiom (to identify all proofs of
the same proposition as equal).

The most noteworthy result we have formalized is the constructive version of
the category of sets of the form Nn and computable maps between them, which is
meant to categorically represent traditional computation. This has not previously
been done either formally or informally. Through our work, we have gained an
understanding (as well as formal constructions) of the additional results, concepts
and machinery that are needed to build such a category.

Here, again, there are far-reaching repercussions of not being able to use the

6

Vinogradova, Felty, and Scott

law of excluded middle, such as constructing partial maps out of a language of
partial recursive maps prf (discussed in the previous section), the semantics of
which can most directly be expressed as a relation. Some of the key recursion
theory results have already been demonstrated using this language directly (such
as the Sm

n theorem) [21], and therefore hold up in the (cartesian restriction) Turing
category we have built. However, the purpose of Turing categories is, in part, to
be able to do as much recursion outside of extensional reasoning of set theory as
possible. For this reason, it would be beneficial to extend the scope of this formal
framework to include other categorical structures useful for presenting elements of
recursion theory in an abstract categorical way.

There are a number of promising directions for further applying this framework.
The most natural, perhaps, is the formalization of the Turing category-formulated
abstraction of Rice’s theorem. This will require the formalization of a number
of general categorical concepts such joins and meets, as emphasized in Cockett’s
lectures [4]. Such general concepts are widely applicable to other results as well.
Applying our framework in another direction, it would be an extremely interesting
and innovative pursuit to use it to study computational complexity classes of total
maps in Turing categories. Other potentially interesting options for building on
this framework include formalizing monoidal Turing categories (with di↵erential
structure) and conducting a formal study more focused on the PCA’s (which, recall,
are computation-modeling structures at the core of every Turing category) as well
as relationships between them.

References

[1] Chapman, J., T. Uustalu and N. Veltri, Formalizing restriction categories (2017).

[2] Church, A., “The Calculi of Lambda Conversion. (AM-6),” Annals of Mathematics Studies, Princeton
University Press, 2016.

[3] Cockett, J., P. Hofstra and P. Hrubeš, Total maps of turing categories, Electronic Notes in Theoretical
Computer Science 308 (2014), pp. 129 – 146, proceedings of the 30th Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXX).

[4] Cockett, R., Turing categories and computability (2010), slides from 15th Estonian Winter School in
Computer Science (EWSCS).
URL http://cs.ioc.ee/ewscs/2010/cockett/estonia-slides-4.pdf

[5] Cockett, R., X. Guo and P. Hofstra, Range categories II: Towards regularity, Theory and Applications
of Categories 26 (2012), pp. 453–500.

[6] Cockett, R. and P. Hofstra, Introduction to Turing categories, Annals of Pure and Applied Logic
156(2-3) (2008), pp. 183–209.

[7] Cockett, R. and S. Lack, Restriction categories I, Theoretical Computer Science 270 (2002), pp. 223–
259.

[8] Constable, R. L. and S. F. Smith, Computational foundations of basic recursive function theory,
Theoretical Computer Science 121 (1993), pp. 89 – 112.
URL //www.sciencedirect.com/science/article/pii/0304397593900858

[9] Cutland, N., “Computability: An introduction to recursive function theory,” Cambridge University
Press, 1980.

[10] Kleene, S. and M. Beeson, “Introduction to Metamathematics,” Ishi Press International, 2009.

[11] Lambek, J. and P. J. Scott, “Introduction to Higher Order Categorical Logic,” Cambridge Studies in
Advanced Mathematics, Cambridge University Press, 1986, 7 edition.

7

Vinogradova, Felty, and Scott

[12] Longo, G. and E. Moggi, “Gödel numberings, principal morphisms, combinatory algebras,” Springer
Berlin Heidelberg, Berlin, Heidelberg, 1984 pp. 397–406.

[13] Manes, E. and M. Arbib, “Algebraic Approaches to Program Semantics,” Monographs in Computer
Science, Springer New York, 2012.

[14] O’Connor, R., “Incompleteness and Completeness: Formalizing Logic and Analysis in Type Theory,”
Ph.D. thesis, Institute for Computing and Information Science, Faculty of Science, Radboud University
Nijmegen (2009).

[15] Paola, R. A. D. and A. Heller, Dominical categories: Recursion theory without elements, J. Symbolic
Logic 52 (1987), pp. 594–635.

[16] Timany, A. and B. Jacobs, Category theory in Coq 8.5, in: The 7th Coq Workshop, Sophia Antipolis,
France, 2015.
URL http://arxiv.org/abs/1505.06430

[17] Turing, A. M., On computable numbers, with an application to the entscheidungsproblem, Proceedings
of the London mathematical society 2 (1937), pp. 230–265.

[18] Vinogradova, P., “Investigating Structure in Turing Categories,” Master’s thesis, University of Ottawa
(2012).

[19] Vinogradova, P., “Formalizing Abstract Computability: Turing Categories in Coq,” Ph.D. thesis,
University of Ottawa (2017).

[20] Zammit, V., A mechanisation of computability theory in HOL, in: Proceedings of the 9th International
Conference on Theorem Proving in Higher Order Logics, TPHOLs ’96 (1996), pp. 431–446.
URL http://dl.acm.org/citation.cfm?id=646523.694703

[21] Zammit, V., A proof of the S-m-n theorem in Coq, Technical report, The Computing Laboratory, The
University of Kent, Canterbury, Kent, UK (1997), http://kar.kent.ac.uk/21524/.

8

Submitted to LSFA 2017

Confluence in Probabilistic Rewriting

1

Alejandro Dı́az-Caro

a,2
Guido Mart́ınez

b

a Universidad Nacional de Quilmes & CONICET. Bernal, Buenos Aires, Argentina
alejandro.diaz-caro@unq.edu.ar

b Universidad Nacional de Rosario & CIFASIS-CONICET. Rosario, Santa Fe, Argentina
martinez@cifasis-conicet.gov.ar

Abstract
Driven by the interest of reasoning about probabilistic programming languages, we set out to study a
notion of unicity of normal forms for them. To provide a tractable proof method for it, we define a
property of distribution confluence which is shown to imply the desired unicity (even for infinite sequences
of reduction) and further properties. We then carry over several criteria from the classical case, such as
Newman’s lemma, to simplify proving confluence in concrete languages. Using these criteria, we obtain
simple proofs of confluence for ⁄1, an a�ne probabilistic ⁄-calculus, and for Qú, a quantum programming
language for which a related property has already been proven in the literature.

Keywords: abstract rewriting system, probabilistic rewriting, confluence

1 Introduction

In the formal study of programming languages, modelling execution via a small-step
operational semantics is a popular choice. Such a semantics is given by an abstract
rewriting system (ARS) which, mathematically, is no more than a binary relation
on abstract terms specifying whether one term can rewrite to another. This relation
is not required to be a function, and can thus allow for a program to rewrite in two
di�erent ways. In such a case, it is important that the di�erent execution paths
for a given program reach the same final value (if any); thus guaranteeing that any
two determinizations of the semantics (e.g. execution machines) assign the same
meaning to every program.

This correctness property is expressible at the level of relations, and is known as
unicity of normal forms (UN): any two irreducible terms reachable from a common
starting point must be equal. For non-trivial languages, such as the ⁄-calculus, it
can be hard to prove this property directly. Fortunately, the property of confluence
can serve as a proof method for it since UN is a trivial corollary of it while its proof

1 This is basically the work done during the second author’s Licenciatura thesis [17].
2 Partially supported by projects STICAmSud 16STIC05 FoQCoSS and PICT-PRH 2015-1208.

D

´

ıaz-Caro and Mart

´

ınez

tends to be more tractable. This was the approach followed by Church and Rosser
in [6, Corollary 2], where UN and confluence were first proven for the ⁄-calculus
in 1936. Nowadays, confluence is widely used to show the adequacy of operational
semantics in many kinds of programming languages.

In the past decades there has been a growing interest in programming languages
with probabilistic behaviours (e.g. [1,2,4,9,10,13,21,22]), which cannot be modelled
as a mere relation between terms. Example features include a probabilistic choice
operator [10] and quantum measurement [9]. In these settings, the same need of
showing the correctness of the semantics is present.

At a first glance, it may seem as if neither UN nor confluence could ever hold
in these cases, since the possible results of, say, rolling a die or measuring a qubit
are irreconcilably distinct. The key observation is that, in a probabilistic language,
a notion of equivalence of programs should be about distributions of values, and
not about punctual values [16]. Indeed, a single program might evaluate to di�er-
ent values if it is run twice, but equality should certainly be reflexive. Thus, the
expectation should be that the di�erent reduction paths do not impact the final
distribution of results. This is precisely the property we set out to study in this
paper, developing an associated notion of confluence for it.

For a concrete example, take a hypothetical language for representing dice rolls,
where ⇤ represents an unrolled die which can reduce to any element in {1, . . . , 6}
with equal probability. For a pair of dice, represented by (⇤,⇤), we should be
allowed to choose which die to roll first. Rolling the first die can result in any term
in the set {(i,⇤)}

i=1,6 with equal probability; and similarly for the second. When
continuing the rolls, both branches will end up in the same uniform distribution.
However, this could be not so: consider the term (⁄x.(x, x)) ⇤. If the die is
rolled before the abstraction is applied, only pairs with equal components can be
obtained, which is not the case if we apply the abstraction first, obtaining (⇤,⇤),
which can reduce to any pair of results. We shall later come back to a similar
language and provide conditions to avoid this divergence.

In Section 2 we introduce the problem of unicity of distributions for probabilistic
rewriting. In Section 3 we define a rewriting system over distributions giving rise
to our notion of distribution confluence and prove its adequacy. In Section 4 we
give some criteria for proving distribution confluence, simplifying the burden of
proof for concrete languages. In Section 5 we extend our unicity of distributions
result to terms which are only asymptotically terminating. In Section 6 we prove
confluence for two concrete programming languages: a simple, a�ne, probabilistic
calculus, dubbed ⁄1 and the quantum lambda calculus Qú [9]. Finally, in Section 7
we conclude, give some insights on future directions, and analyse some related work.

2 Probabilistic Rewriting

2.1 Preliminaries

We assume familiarity with the study of abstract rewriting. We adopt the terminol-
ogy from [6] and call a sequence of expansions followed by a sequence of reductions

2

D

´

ıaz-Caro and Mart

´

ınez

[(p1, a1), (p2, a2)] s [(p2, a2), (p1, a1)] (Flip)

[(p1, a), (p2, a)] s [(p1 + p2, a)] (Join)

[(p1 + p2, a)] s [(p1, a), (p2, a)] (Split)

Fig. 1. Basic steps of the s relation

a peak. When the order is reversed, such sequence is called a valley. The property
of confluence can then be expressed as “there is a valley for every peak”. When
an ARS A is confluent, we note it by A |= CR, and similarly for UN and other
properties. The relation R modulo E, noted as R / E, is defined for any equivalence
relation E as E · R · E [15, 20].

We denote by L (X) the type of finite lists with elements in X, where ‘[]’, ‘:’ and
‘++ ’ denote the empty list, the list constructor, and list concatenation, respectively.
We also use the notation [a, b, c] for a : b : c : [].

We define D(A) = L (R+ ◊ A), used as an explicit representation of (finitely-
supported) distributions. There is no further restriction on D(A). In particular,
any given element might appear more than once, as in [(1

/3, a), (1
/2, b), (1

/6, a)]. On a
node (p, a) of the distribution, p is called the weight and a the element. The weight
of a distribution is defined to be the sum of all weights of its nodes, and can be
any positive real number. When we require a normalised distribution, we use the
type D1(A), defined as the set of those d œ D(A) with unit weight. We abbreviate
the distribution [(p1, a1), (p2, a2), . . . , (p

n

, a

n

)] by [(p
i

, a

i

)]
i

, where n should be clear
from the context. We also write –D for the distribution obtained by scaling every
weight in D by –; that is, – [(p

i

, a

i

)]
i

= [(–p

i

, a

i

)]
i

.
We often reason about equivalence of distributions. For that purpose, we define a

relation ‘s’ as the congruence closure of the rules in Fig. 1 (i.e. the smallest relation
satisfying the rules and such that D s D

Õ implies E1 ++ D ++ E2 s E1 ++ D

Õ ++ E2).
We distinguish some subsets of ‘s’ by limiting the rules that may be used. We note
by S the congruence closure of Split, by (FJ) the congruence closure of both Flip

and Join, and similarly for other subsets.
We call two distributions equivalent if they are related by the reflexive-transitive

closure of s, noted t. Two distributions are equivalent, then, precisely when they
assign the same total weight to every a œ A, regardless of order and duplication.

Arguably, using such a definition of distributions with lists is cumbersome and
less clear than using a more semantic definition. However, we feel this is outweighed
by the degree of rigurosity attained in later proofs (especially as we found some of
them to be quite error-prone). As a secondary benefit, most of our development
should be straightforwardly mechanizable.

A downside of the choice of lists is that we can only represent finitely-supported
distributions. This restriction is present in other works as well (e.g. [11,23]) and it
seems to not be severe for modelling programming languages.

2.2 Probabilistic Abstract Rewriting Systems (PARS)

To model probabilistic rewriting, we need to move away from a simple relation
between terms as used in ARSes. We shall then relate elements to distributions

3

D

´

ıaz-Caro and Mart

´

ınez

of elements, which introduce probability. In favour of expressivity, we allow for a
single element to be related to multiple distributions (or none) 3 .
Definition 2.1 A probabilistic abstract rewriting system (PARS) is a pair (A, ‘æ)
where A is a set (called the “carrier”) and ‘æ a relation of type P(A◊D1(A)) (called
the “pointwise evolution relation”).
It should be clear that every ARS is also a PARS by taking Dirac distributions (i.e.
normalised distributions with a single element). We can provide a simple example
of a PARS by extensionally listing ‘æ, as is commonly done for ARSes.

Example 2.2 Let A be the PARS given by

a ‘æ [(2
/3, b), (1

/3, c)] a ‘æ [(2
/5, d), (3

/5, e)]
b ‘æ [(1

/2, c), (1
/2, d)] c ‘æ [(1, d)]

Here, a is the only non-deterministic element. We call d a terminal element
since it has no successor distributions.

As more significant examples, in Section 6 we describe two probabilistic ⁄-calculi
with operational semantics modellable by a PARS.

Execution in a PARS is a mixture of non-deterministic and probabilistic choices.
The first kind, corresponding to the P operator, occur when the machine chooses a
successor distribution for the current element. The second kind, corresponding to
the D1 operator, is a random choice between the elements of the chosen successor
distribution. To model such execution, we introduce the notion of computation tree.

Definition 2.3 Given a PARS (A, ‘æ), we define the set of its
(finite) “computation trees” with root a (noted T (a)) inductively
by the following rules.

a œ T (a)
a ‘æ [(p1, a1), . . . , (p

n

, a

n

)] t

i

œ T (a
i

)
[a; (p1, t1); . . . ; (p

n

, t

n

)] œ T (a)

A graphical representation of an example tree for the PARS in
Definition 2.2 is given in the right. We also sometimes consider
infinite computation trees, by taking the coinductively defined set
instead.

a

b

c

c

d d

2
/3 1

/3

1
/2 1

/2 1

So, any tree T œ T (a) represents one possible (uncertain) evolution of the system
after starting on a. There is no further assumption about trees: in particular, if an
element a is expanded many times in a tree, di�erent successor distributions may
be used at each node 4 .

When all the leaves of a tree are terminal elements, we call the tree maximal
(as there is no proper supertree of it). A computation tree naturally assigns to
each of its leaves a probability, taken as the product of the p

i

in the path from the

3 Note that limiting it to a single distribution would make it impossible to model the term (⇤,⇤) without
fixing a strategy.
4 In some works, such as [3,4], it is assumed that execution is Markovian, meaning the choice of distribution
depends only on the current state. We do not make such assumption and allow for a more general execution.

4

D

´

ıaz-Caro and Mart

´

ınez

root to it. It is clear that collecting the leaves of a tree (along with their assigned
probabilities) gives rise to a normalised list distribution. We call such distribution
the support of T and note it as supp(T).

We can now state our property of interest.
Definition 2.4 (UTD) A PARS A has “unique terminal distributions” when for
every a and T1, T2 œ T (a) maximal, we have supp(T1) t supp(T2).

We said before that proving UN (for ARSes) directly is usually hard. Since
PARSes subsume ARSes, the same di�culties arise for proving UTD directly. There-
fore, we seek a property akin to confluence, providing a more tractable proof method.

One idea is to set up a rewriting over the supports of computation trees (expand-
ing leaves as a reduction) and study its confluence. However, this is bound to be
too rigid, as the behaviours of computation trees are not identified by equivalence of
their support distributions, forbidding reasoning modulo equivalence. For example,
a tree with two leaves (1

/2, a) can exhibit more terminal distributions than a tree
with a single (1, a) leaf. Therefore we would have to deem the following, morally
confluent, system:

a ‘æ [(1
/2, b), (1

/2, c)] a ‘æ [(1, c)] b ‘æ [(1, c)]

as non-confluent, since [(1
/2, c), (1

/2, c)] ”= [(1, c)].
In order to not reject cases like this, we could change the previous notion to

allow for an equivalence when closing the diagram. In this case, it is hard to reason
compositionally about the property.

3 Rewriting Distributions and Confluence

To arrive at a notion of confluence that avoids the previously mentioned draw-
backs, we shall define a rewriting over distributions that is more liberal than that
of computation trees (Definition 3.4).
Definition 3.1 Given a PARS A = (A, ‘æ), we define the relation ⇣

P

(of type
P(D(A) ◊ D(A))) (called “parallel evolution”) by the rules:

a ‘æ A ds ⇣
P

ds

Õ

(p, a) : ds ⇣
P

pA ++ ds

Õ
ds ⇣

P

ds

Õ

(p, a) : ds ⇣
P

(p, a) : ds

Õ [] ⇣
P

[]

Note that without using the first rule, this is just the identity relation on dis-
tributions. We note the subset of this relation where the first rule must be used at
least once in a step as ⇣1

P

, and call it proper evolution. Note that ⇣
P

is enough to
simulate computation trees in this system, since it can be used to rewrite between
their supports in the following sense.
Definition 3.2 We call a relation æ “compositional” when, if D1 æ E1 and D2 æ
E2, then –D1 ++ —D2 æ –E1 ++ —E2 for all –, — œ R+.

Lemma 3.3 If T œ T (a), then [(1, a)] ⇣ú
P

supp(T)

Proof. First, note that ⇣
P

is compositional. The result then follows by induction

5

D

´

ıaz-Caro and Mart

´

ınez

on T , using compositionality. 2

We now define an ARS over distributions, combining both parallel evolution and
equivalence steps. Our definition of confluence for a PARS A is then simply the
usual confluence of that relation.
Definition 3.4 Given a PARS A = (A, ‘æ), we define an associated ARS Det(A)
(called the “determinisation” of A) over the set D(A) by the relation ⇣ = (⇣

P

fit).
Definition 3.5 (Distribution confluence) We say a PARS A is “distribution
confluent” (or simply “confluent”) when Det(A) is confluent in the classical sense.

Note that reduction in Det(A) is more liberal than the expansion of trees,
since it allows for “partial” evolutions. Indeed, if a ‘æ D, we have [(1, a)] ⇣
[(1

/2, a), (1
/2, a)] ⇣ 1

/2D ++ [(1
/2, a)]. Nevertheless, its confluence is adequate for

proving UTD, as Lemma 3.7 shows.

Lemma 3.6 If D1 is terminal and D1 ⇣ú
D2, then D1 t D2 and D2 is terminal.

Proof. It is clear, from the definition of ⇣
P

, that if D1 is terminal and D1 ⇣
P

D

Õ,
then D1 = D

Õ (that is, exactly equal). The result then follows by induction on the
number of steps, and the transitivity and reflexivity of t. 2

Lemma 3.7 If A |= CR, then A |= UTD.

Proof. Take T1, T2 œ T (a) maximal. We know from Lemma 3.3 that supp(T2) ⌘ú

[(1, a)] ⇣ú supp(T1). By confluence, there must exist C such that supp(T2) ⇣ú

C ⌘ú supp(T1). Since T1, T2 are maximal, their supports are terminal. Then, from
two applications of Lemma 3.6, we get that supp(T2) t C t supp(T1), as needed.2

Furthermore, beyond UTD, distribution confluence implies that diverging com-
putations (with no terminal distribution) can also be joined. As a consequence of
that, confluence gives a neat method of proving the consistency of the equational
theory induced by ⇣, as long as two distinct terminal elements exist.

Lemma 3.8 If D1, D2 are terminal distributions, then D1 ⌘⇣ú
D2 if and only if

D1 t D2.

Proof. The way back is trivial, so we detail the way forward. From confluence
(repeatedly), D1 and D2 must have a common reduct. The result then follows from
Lemma 3.6. 2

So, if a and b are distinct terminal elements, we know that ⇣-convertibility is
a consistent theory as [(1, a)] ”t [(1, b)]. Summarizing, in a confluent PARS, rea-
soning about equivalence of programs is simplified and there is a strong consistency
guarantee about convertibility, much like in the classical case.

4 Proving confluence

4.1 Introduction

In the previous section, we have introduced our definition of confluence and argued
that it is correct and su�cient for studying programming languages. For the prop-

6

D

´

ıaz-Caro and Mart

´

ınez

erty to be useful in practice, it should be also amenable to be proven. In this section
we provide several simplified criteria for this task, obtaining analogues to many of
the usual methods for classical confluence.

Since distribution confluence is no more than the classical confluence of ⇣,
every existing classical criteria (such as the diamond property or Newman’s lemma)
is valid in this setting. However, very few of those are useful. Indeed, Det(A) is
never strongly (or even weakly) normalising regardless of A, and therefore Newman’s
lemma does not apply. With respect to the diamond property, consider a system
with a ‘æ D, then the following reductions are possible:

[(1, a)] ⌘ [(1
/2, a), (1

/2, a)] ⇣ 1
/2D ++ [(1

/2, a)]

and these two distributions cannot be joined in a single step (unless we make further
assumptions on A). Also, as evidenced by this example, we need to prove confluence
for every distribution, not just for Dirac ones; and take into account equivalence
steps as well.

Thus, a priori, it would seem as if distribution confluence is hard to prove.
To relieve that, we shall prove various syntactic lemmas about the relation ⇣,
allowing us to decompose it into more manageable forms. We then show how we
can limit our reasoning to Dirac distributions, ignore equivalence steps in the peaks
and allow to use them freely in the valleys. Lastly, we carry over classical criteria
for confluence into this setting, such as the aforementioned diamond property and
Newman’s lemma.

4.2 Syntactic lemmas about the relation ⇣

Since both ⇣
P

and t are reflexive, we have (⇣
P

fi t)ú = (⇣
P

/ t)ú. Thus, since
confluence is a property over the reflexive-transitive closure of a relation, it su�ces
to study the confluence of ⇣

P

/t, where equivalence steps do not have a cost, but
are pervasive.

Given the precise syntactic definition for both relations, we can prove by analysis
on the reductions that any step of ⇣

P

/ t can be made by splitting first, then
evolving, and then joining back elements, as Lemma 4.3 states. We first introduce
the following notion of commutation 5 .

Definition 4.1 (Sequential commutation) We say that a relation R

“commutes over” S when S · R ™ R · S, and note it as R ‰ S. The
property can be expressed by the diagram on the right.

.

. .

.

S R

R S

A key property of sequential commutation is that if R ‰ S, then (R fi S)ú =
R

ú · S

ú. It is also preserved when taking the n-fold composition (i.e. “n steps”) or
reflexive-transitive closures on each side. We now prove some commutations relating
evolution and equivalence steps (the last one needs some “administrative” steps).

Lemma 4.2 We have ⇣
P

‰ (FJ)ú; S ‰ (FJ)ú and ⇣
P

· S ™ S · ⇣
P

· (FJ)ú.

5 Note that this is not the usual notion of commuting relations, defined as S

≠1 · R ™ R

≠1 · S, which is a
symmetric property and could be called “parallel”.

7

D

´

ıaz-Caro and Mart

´

ınez

Proof. By induction on the shape of the reductions. 2

Lemma 4.3 The relations (⇣
P

/ t) and S

ú · ⇣
P

· (FJ)ú coincide.

Proof. The backwards inclusion is trivial, so we detail only the forward direction.
By making use of the second commutation in Lemma 4.2 we get that t = S

ú ·(FJ)ú.
Thus, we need to show S

ú · (FJ)ú · ⇣
P

· S

ú · (FJ)ú ™ S

ú · ⇣
P

· (FJ)ú. The proof
then proceeds by using the other two commutations to reorder the relations. 2

Furthermore, this equivalence extends to n-fold compositions.

Lemma 4.4 The relations (⇣
P

/ t)n and S

ú · ⇣n

P

· (FJ)ú coincide.

Proof. By induction on n, and using the previous lemma and commutations. 2

4.3 Simplifying diagrams

With the previous decompositions, we can now prove a very generic result about
diagram simplification with a specific root D, which then easily generalizes to the
whole system.

Definition 4.5 We say a pair of relations (“, ”) “closes” another pair
(–, —) “on a” if whenever b Ω

–

a æ
—

c then there exists d such that
b æ

“

d Ω
”

c. The diagram for the property can be seen on the right.
When this occurs for all a, we simply say “(“, ”) closes (–, —)”. Note
that æ is confluent precisely when (æú

, æú) closes (æú
, æú).

a

b

c

d

–

—

“

”

Definition 4.6 We call a relation æ “local”, when if –D1 ++ —D2 æ E, then there
exist E1, E2 such that E = –E1 ++ —E2 and D

i

æ E

i

. (Note that ⇣
P

and S are
local).
Theorem 4.7 Let –, — be local relations and “, ” compositional relations. If (“ /

t, ” / t) closes (–, —) for the Dirac distributions of D, then (“ / t, ” / t) closes
(Sú · – · (FJ)ú

, S

ú · — · (FJ)ú) for D.

Proof. We give a sketch of the proof, for a more explanatory development please
refer to [17]. We need to close (Sú · – · (FJ)ú

, S

ú · — · (FJ)ú). First, note that closing
(Sú · –, S

ú · —

ú) is enough since we can revert the (FJ)ú steps with (FS)ú steps.
Now, since – and — are local, S

ú · – and S

ú · — are as well. Thus, we can limit
ourselves to closing the Dirac distributions of D, and combine the reductions since
“, ” are compositional. We now need to close (Sú ·–, S

ú ·—) when starting from some
[(1, a)]. Note that the left (right) branch is then of the form p1D1 ++ · · · ++ p

n

D

n

(q1E1 ++ · · · ++ q

m

E

m

), where a reduces via – (—) to each D

i

(E
j

). We can apply
our hypothesis to get a C

i,j

closing each D

i

, E

j

. By first splitting each branch
appropriately, we can close them in p1q1C1,1 ++ . . .++ p1q

m

C1,m

++ . . .++ p

n

q

m

C

n,m

,
thus we conclude. 2

From this theorem, we get as corollaries several simplified criteria for confluence,
applicable at the level of a particular distribution or to the whole system.
Criterion 4.8 (Dirac confluence) If for every element a of D and distributions
E, F such that E ⌘ú

P

[(1, a)] ⇣ú
P

F there is a C such that E ⇣ú
C ⌘ú

F , then D

8

D

´

ıaz-Caro and Mart

´

ınez

is confluent.

Proof. A corollary of Theorem 4.7, taking – = — = “ = ” = ⇣ú
P

. 2

Criterion 4.9 (Semi-confluence) If for every element a of D and distributions
E, F such that a ‘æ E and [(1, a)] ⇣ú

P

F there is a C such that E ⇣ú
C ⌘ú

F ,
then D is semi-confluent for ⇣

P

/ t.

Proof. A corollary of Theorem 4.7, taking – = ⇣
P

and — = “ = ” = ⇣ú
P

. 2

Criterion 4.10 (Diamond property) If for every element a of D and distribu-
tions E, F such that E Ω[a ‘æ F there is a C such that E ⇣

P/t C ⌘
P/t F , then

D has the diamond property for ⇣
P

/ t.

Proof. A corollary of Theorem 4.7, taking – = — = “ = ” = ⇣
P

. 2

Note that in all these criteria, we need not consider any equivalence in the peak,
and can use them freely in the valley, both before and after evolving. Also, proving
any of these criteria for every element a entails the confluence of the system.

In the classical case, a common tool for proving confluence is switching to another
rewriting relation with equal reflexive-transitive closure (and thus an equivalent
confluence) but which might be easier to analyse. For distribution confluence, a
similar switch is allowed, slightly simplified by Lemma 4.12.
Definition 4.11 Given two PARS over the same carrier set A, with relations ‘æ1
and ‘æ2, if for every a ‘æ1 D, we have [(1, a)] ⇣ú

2 D we say that ‘æ1 is simulated
by ‘æ2.

Lemma 4.12 If ‘æ1 is simulated by ‘æ2, then ⇣1 ™ ⇣ú
2. Hence, if both relations

simulate each other, we have ⇣ú
1 = ⇣ú

2, and their confluences are therefore equiva-
lent.

Proof. The first part follows by case analysis on the reduction ⇣1. The second
part is then trivial. 2

4.4 Newman’s lemma

Newman’s lemma [18] states that, for a strongly normalising system, local confluence
and confluence are equivalent properties, yet we have remarked previously that ⇣

P

is never a strongly normalising relation. To get an analogue to Newman’s lemma,
we thus provide a specialized notion of strong normalisation.
Definition 4.13 A infinite sequence D

i

such that D1 æ D2 æ D3 æ · · · is called
an “infinite æ-chain” (of root D1).
Definition 4.14 We call a distribution D “strongly normalising” when there is no
infinite ⇣1

P

-chain 6 of root D. We call a PARS strongly normalising when every
distribution is strongly normalising.

There are indeed systems which do satisfy this requirement, and it is intuitively
what one would expect. Now a probabilistic analogue to Newman’s lemma can be
obtained, following a proof style very similar to that of [14].

6 Note that infinite (⇣1
P / t)-chains always exist because of partial evolution.

9

D

´

ıaz-Caro and Mart

´

ınez

Definition 4.15 We say that a distribution D is “locally confluent” when E ⌘1
P

D ⇣1
P

F implies that there exists C such that E ⇣ú
C ⌘ú

F .
(Note that strong normalisation over Dirac distributions implies it for all distri-

butions, and likewise for local confluence.)

Lemma 4.16 (Newman’s) If a PARS is locally confluent and strongly normalis-
ing, then it is confluent.

Proof.

D

E

Õ
F

Õ

E FC

LC

IH
IH

C

Õ

C

ÕÕ

P

1
P

1

P

1ú
P

1ú

* *

* *

**

We shall prove, by well-founded induction over ⇣1
P

, that
every distribution is confluent. For a particular distribution,
it su�ces to show that that any peak of proper evolutions
can be closed by ⇣ú. Then, by Corollary 4.8 (and since
⇣ú

P

= ⇣1ú
P

), confluence follows. We want to close a diagram
of shape E ⌘1ú

P

D ⇣1ú
P

F . If either of the branches is zero
steps long, then we trivially conclude. If not, we can form
the diagram on the right, completing the proof by local
confluence and the induction hypotheses for E

Õ and F

Õ. 2

5 Limit distributions

In classical abstract rewriting, an element can either be non-normalising, weakly
normalising or strongly normalising (corresponding to the situations where it will
not, may, and will normalise, respectively). In probabilistic rewriting, the story is
not as simple. Consider the following PARS, where b is a terminal element.

a ‘æ [(1
/2, a), (1

/2, b)]

Is a normalising? One could say “no” since, indeed, it does not have a finite
maximal computation tree, as there is always some probability for the system to be
in the non-terminal a state. However, such a probability will be made arbitrarily
small by taking su�cient steps, and the distribution [(1, b)] is reached in the limit.
In this case a is called almost surely terminating [3]. Certainly, a desirable fact is
that almost-surely-terminating elements have a unique final distribution. We will
prove that distribution confluence guarantees such unicity.

We first introduce a notion of distance between mathematical distributions, i.e.
normalised functions of type A æ [0, 1] 7 . We note with JDK the mathematical
distribution obtained from the list distribution D (with the expected definition).
We also extend definitions over mathematical distributions to list distributions by
applying J≠K where appropriate.
Definition 5.1 Given D, E mathematical distributions, we define the distance be-
tween them as d(D, E) =

q
aœA

|D(a) ≠ E(a)|.
Definition 5.2 (Limit of a sequence) Given an infinite sequence of mathemat-
ical distributions D0, D1, . . . we say L is a limit for the sequence if for every Á > 0,

7 We move away from list distributions to allow for infinitely supported distributions on the limit.

10

D

´

ıaz-Caro and Mart

´

ınez

there exists N > 0 such that for any i Ø N , d(D
i

, L) < Á.
Note that this distance is the L1 distance and the definition of limit is the usual

one for metric spaces. It is then well known that there is at most one limit for a given
sequence. We are interested in limits composed of terminal elements, representing
a distribution of values. For that, the following definition is useful.
Definition 5.3 For a mathematical distribution D, we define its “liveness” as the
sum of weights for non-terminal elements. That is, Liv(D) =

q
aœdom(‘æ) D(a)

Note that the liveness of a list distribution cannot increase by evolution, and that
Liv(D) = 0 i� D is terminal. Moreover, since the normalised part of a distribution
cannot evolve, liveness provides an upper bound on the possible distance to be
attained by evolution, as the following lemma states.

Lemma 5.4 If D ⇣ú
E, then d(D, E) Æ 2 · Liv(D).

Proof. By Lemma 4.4 there exist D

Õ and E

Õ such that D t D

Õ ⇣ú
P

E

Õ t E.
Because of the equivalences, it su�ces to show the result for D

Õ and E

Õ. Assume,
without loss of generality, that D

Õ = D

l

++ D

t

, where all elements of D

l

are not
terminal, and all those of D

t

are. Since parallel evolution is local and terminal
elements cannot evolve, we know that E

Õ = E

ÕÕ ++ D

t

for some E

ÕÕ. Then, d(DÕ
, E

Õ)
is simply d(D

l

, E

ÕÕ). Note that Liv(DÕ) is the weight of D

l

and of E

ÕÕ. Since distance
is bounded by total weight, it follows that it is at most 2 · Liv(DÕ) = 2 · Liv(D). 2

Now, we can extend our notion of unicity of terminal distributions to limit
distributions of terminal elements, accounting for an infinite sequence of reduction
steps. We call this property unicity of limit distributions (ULD) and show it to be
a consequence of distribution confluence.

Lemma 5.5 If A is confluent, and a distribution D is the root of two infinite
⇣-chains E

i

and F

j

with respective limits EŒ and FŒ terminal distributions, then
EŒ = FŒ.

Proof.

D

E

i

F

j

EŒ FŒC

* *

[0, Á/3)

*

[0
,

Á /3
)

*

[0
,

Á /6
)

*

[0, Á/6)

*

Take Á > 0. By the definition of limit, we know there
are i, j such that d(E

i

, EŒ) <

Á

/6 and d(F
j

, FŒ) <

Á

/6.
Since EŒ and FŒ are terminal, Liv(E

i

) and Liv(F
j

)
must be less than Á

/6. The distributions E

i

and F

j

are
reachable by a finite amount of ⇣ steps, so by con-
fluence there exists a distribution C such that E

i

⇣ú

C ⌘ú
F

j

. From Lemma 5.4, we get that d(E
i

, C) <

Á

/3

and likewise for F

j

. From these four bounds and the tri-
angle inequality we get that d(EŒ, FŒ) < Á. Since this is the case for any positive
Á, this distance must be exactly 0, and therefore EŒ = FŒ. 2

11

D

´

ıaz-Caro and Mart

´

ınez

(⁄x.M)N ‘æ [(1, M [N/x])]
R-—

(⁄!x.M)!N ‘æ [(1, M [N/x])]
R-—!

M üp N ‘æ [(p, M), (1 ≠ p, N)] R-ü

M ‘æ [(pi, Mi)]i
M üp N ‘æ [(pi, Mi üp N)]i

R-ü-L

N ‘æ [(pi, Ni)]i
M üp N ‘æ [(pi, M üp Ni)]i

R-ü-R

M ‘æ [(pi, Mi)]i
MN ‘æ [(pi, MiN)]i

R-AppL

N ‘æ [(pi, Ni)]i
MN ‘æ [(pi, MNi)]i

R-AppR

M ‘æ [(pi, Mi)]i
⁄x.M ‘æ [(pi, ⁄x.Mi)]i

R-⁄

M ‘æ [(pi, Mi)]i
⁄!x.M ‘æ [(pi, ⁄!x.Mi)]i

R-⁄!

Fig. 2. Full semantics for ⁄1

6 Case studies

6.1 A linear probabilistic ⁄-calculus: ⁄1

In our introductory example, we used the term (⁄x.(x, x)) ⇤ as an example of a
non-confluent computation. The tension apparently arises between “binding the
result” (CBV) and “binding the computation” (CBN), which makes a di�erence in
the probabilistic case when the binding is duplicated (as already pointed out in [10]).
There seem to be three ingredients needed for this failure of confluence of a term
(⁄x.M)N : (1) x appears free more than once in M (2) N has a non-Dirac terminal
distribution (3) both call-by-name and call-by-value reductions are possible.

In this section we define a probabilistic ⁄-calculus, dubbed ⁄1, that prevents
the combination of these three features by providing two kinds of abstractions,
one restricting duplication and one restricting evaluation order 8 . We show ⁄1 to be
confluent (by a diamond property), giving evidence that little more than linearity of
probabilistic arguments is required to achieve a confluent probabilistic programming
language.

The calculus is heavily based on the one defined in [24]. The set of pre-terms is
given by the following grammar

M, N ::= x | MN | ⁄x.M | ⁄!x.M | !M | M ü
p

N

where the main novelty is the probabilistic choice operator ü
p

, for any real number
p in the open interval (0, 1). Abstractions (⁄) are a�ne, that is, in the scope of
⁄x, there can be at most one free occurrence of x. Non-linear abstractions (⁄!)
have no such restriction. A�nity is enforced by a well-formedness judgment, whose
definition is straightforward and which we thus omit. We work only with well-formed
pre-terms, which form the set of terms.

The operational semantics is provided as a PARS in Fig. 2. A non-linear ab-
straction can only —-reduce with an argument of the form !N . Such terms cannot
reduce, and are called thunks. This e�ectively implies that non-linear abstractions
follow a fixed strategy (which is, morally, CBV until the argument is reduced to a
thunk and CBN afterwards) 9 .

8 For more expressivity, the calculus could include another abstraction without neither restriction, but
forbidding probabilistic arguments. We do not deem this as interesting for the scope of this paper.
9 We are thus adopting “surface reduction” only since allowing for “internal reduction” [24] would give rise

12

D

´

ıaz-Caro and Mart

´

ınez

To prove the diamond property for ⁄1, we first need two substitution lemmas.
When D = [(p

i

, a

i

)]
i

, we write D[M/x] for the distribution [(p
i

, a

i

[M/x])]
i

. Simi-
larly, M [D/x] denotes [(p

i

, M [a
i

/x])]
i

.

Lemma 6.1 If M ‘æ D, then M [N/x] ‘æ D[N/x].

Proof. By induction on M ‘æ D. 2

Lemma 6.2 If M ‘æ D, and x is linear in N , then N [M/x] ‘æ N [D/x].

Proof. By induction on the well-formedness of N . 2

Lemmas 6.1 and 6.2 are analogous to both statements of [24, Lemma 3.1]. Armed
with both, we can prove the following theorem, which implies the diamond property.
Theorem 6.3 If D Ω[M ‘æ E then there exist C, C

Õ such that D ⇣
P

C and
E ⇣

P

C

Õ with C t C

Õ.

Proof. By induction on the shape of M ‘æ D and M ‘æ E. 2

By Corollary 4.10 we conclude that the calculus ⁄1 is confluent, and thus enjoys
both UTD and ULD.

6.2 Qú

The Qú calculus [9] is a quantum programming language with quantum measure-
ment, an inherently probabilistic operation. Reduction occurs between configura-
tions, which are terms coupled with a quantum state, and which we will not detail
further. Its semantics does not fix a strategy and, as ⁄1, is also based on [24].
Reduction steps are paired with a label indicating which type of reduction occurred
(e.g. which qubit was measured). In Qú, terms are linear and not a�ne: vari-
ables representing quantum data cannot be duplicated nor discarded, as per the
no-cloning [26] and no-erasure [19] properties of quantum physics.

The authors prove a property called strong confluence which asserts that any
two maximal (possibly infinite) computation trees with a common root have an
equivalent support when restricted to normal forms, and, further, that any normal
form appears in an equal amount of leaves on both trees.

To prove such property, the authors prove a crucial lemma called quasi-one-
step confluence, which is morally a diamond property but with slightly di�erent
behaviours according to the reductions taken. The reductions are distinguished
between two sets N , K and those of the form meas

r

(measurements). We will not
describe these sets nor Qú’s semantics (its full description can be found in [9]), and
will only state the lemma about its reductions. The notation C æp

–

D means “C

reduces to D with probability p via the label –”; and C æp

N D means C æp

–

D for
some – œ N (idem K).

Lemma 6.4 (Quasi-one-step Confluence for Qú
[8, Proposition 4])

Let C, D, E be configurations and C æp

–

D, C æs

—

E, then:

to the same non-confluence.

13

D

´

ıaz-Caro and Mart

´

ınez

(i) If – œ K and — œ K, then either D = E or there is F with D æ1
K F and

E æ1
K F .

(ii) If – œ K and — œ N , then either D æ1
N E or there is F with D æ1

N F and
E æ1

K F .
(iii) If – œ K and — = meas

r

, then there is F with D æs

measr
F and E æ1

K F .
(iv) If – œ N and — œ N , then either D = E or there is F with D æ1

N F and
E æ1

N F .
(v) If – œ N and — = meas

r

, then there is F with D æs

measr
F and E æ1

N F .
(vi) If – = meas

r

and — = meas
q

(with r ”= q), then there are t, u œ [0, 1] and an
F such that pt = su, D æt

measq
F and E æu

measr
F .

From this lemma, the fact that there are no infinite K sequences, and a “prob-
abilistic strip lemma”, the authors prove strong confluence [9, Theorem 5.4].

For distribution confluence, a simpler proof can be obtained. After modelling
Qú as a PARS (without labeled reductions, but sets of distributions instead) we
can readily reinterpret Lemma 6.4 to prove the diamond property for it (by Corol-
lary 4.10). From this result, distribution confluence follows, and therefore also
unicity of both terminal and limit distributions. Notably, neither the normalisation
requirement for K nor the “probabilistic strip lemma” are needed for this fact.

Our obtained distribution confluence is similar, but neither weaker nor stronger
than strong confluence. It is not weaker as distribution confluence guarantees that
divergences of computations without any normal form can be joined, which strong
confluence does not. It is also not stronger as it implies nothing of limit distributions
that are not terminal, while it follows from strong confluence that they must coincide
in their normalized part. It also does not imply the equality between the amount
of leaves on each tree 10 .

7 Conclusions

We have studied the problem of showing that an operational semantics for a prob-
abilistic language is not a�ected by the choice of strategy. For this purpose, we
provided a definition of confluence for probabilistic systems by defining a classical
relation over distributions. We showed our property of distribution confluence to
be appropriate as, in particular, it implies a unicity of terminal distributions, both
for finite and infinite reductions, and gives an equational consistency guarantee.

We believe this development demonstrates that distribution confluence provides
a reasonable “sweet spot” for proving the correctness of probabilistic semantics, as
it provides the expected guarantees about execution while allowing tractable proofs.
Concretely, the provided proofs for ⁄1 and Qú are in line with what one would expect
for linear calculi.

The proof about Qú also partially answers the conjecture posed in [9, Section
8] (“any rewriting system enjoying properties like Proposition 4 [our Lemma 6.4]

10 If needed, this can be recovered by removing Split and Join from the definition of s and deriving criteria
analogous to those of Section 4. One can then conclude that there is not only the same amount but that
they are the same sequence of leaves reordered.

14

D

´

ıaz-Caro and Mart

´

ınez

enjoys confluence in the same sense as the one used here”) positively. The answer
is partial since distribution confluence is not strictly equivalent.

Looking ahead, there are several interesting directions to explore. First, a study
of confluence dealing with terms (and not just abstract elements) should provide
more insights applicable to concrete languages, and we expect concepts such as
orthogonality to have probabilistic analogues. As a generalization, it seems possible
to take distribution weights from any mathematical field and not only the positive
reals: even if interpreting such systems is not obvious, it seems most of our results
would hold. Finally, a quantitative notion of confluence could also be explored,
where a distribution is considered confluent if any divergence of it can be joined
“up to Á”; in particular, obtaining useful simplified criteria for said property seems
di�cult.

7.1 Related work

In [7], similar definitions of rewriting of distributions and confluence are introduced.
A key di�erence is that, in that work, equivalent distributions are identified and
there is no partial evolution. In particular, this implies that the relation is not
compositional, introducing a very subtle error in Lemma 10 (which, basically, states
that a diamond property on Dirac distributions implies that of the whole system).
The error is not severe for their development, but highlights the non-triviality of
the matter.

In [12], a notion of confluence is defined and proven for an extension of ⁄

q

[25] (a
quantum ⁄-calculus) with measurements (thus introducing probabilistic behaviour).
The proposed confluence is basically a confluence on computation trees, and the one
we study in this paper is strictly weaker, yet su�cient for UTD and consistency.

In [9], already amply discussed, the notion of confluence introduced is a strong
confluence over maximal trees (either finite or infinite) which is related, but neither
weaker nor stronger than distribution confluence.

Finally, in [5], a property of confluence is defined and studied over probabilistic
rewriting systems which do not contain any non-determinism (i.e. where ‘æ is a par-
tial function). This is a very di�erent notion of confluence, speaking about punctual
final results instead of distributions (indeed, distribution confluence trivially holds
as there is no non-determinism).

References

[1] S. Andova. Process algebra with probabilistic choice. In J.-P. Katoen, editor, Formal Methods for Real-
Time and Probabilistic Systems, volume 1601 of Lecture Notes in Computer Science, pages 111–129,
1999.

[2] J. Borgström, U. Dal Lago, A. D. Gordon, and M. Szymczak. A lambda-calculus foundation for
universal probabilistic programming. In Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, pages 33–46, New York, NY, USA, 2016. ACM.

[3] O. Bournez and F. Garnier. Proving positive almost-sure termination. In J. Giesl, editor, Proceedings
of the 16th International Conference on Term Rewriting and Applications (RTA’05), volume 3467 of
Lecture Notes in Computer Science, pages 323–337. Springer-Verlag, 2005.

[4] O. Bournez and M. Hoyrup. Rewriting logic and probabilities. In R. Nieuwenhuis, editor, Rewriting
Techniques and Applications, volume 2706 of Lecture Notes in Computer Science, pages 61–75, 2003.

15

D

´

ıaz-Caro and Mart

´

ınez

[5] O. Bournez and C. Kirchner. Probabilistic Rewrite Strategies. Applications to ELAN. In S. Tison,
editor, Proceedings of the 13th International Conference on Rewriting Techniques and Applications
(RTA’02), volume 2378 of Lecture Notes in Computer Science, pages 252–266. Springer-Verlag, 2002.

[6] A. Church and J. B. Rosser. Some properties of conversion. Transactions of the American Mathematical
Society, 39(3):472–482, 1936.

[7] U. Dal Lago, C. Faggian, B. Valiron, and A. Yoshimizu. The geometry of parallelism: Classical,
probabilistic, and quantum e�ects. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, pages 833–845, New York, NY, USA, 2017. ACM.

[8] U. Dal Lago, A. Masini, and M. Zorzi. Confluence results for a quantum lambda calculus with
measurements. arXiv:0905.4567. Extended version of [9].

[9] U. Dal Lago, A. Masini, and M. Zorzi. Confluence results for a quantum lambda calculus with
measurements. In B. Coecke, P. Panangaden, and P. Selinger, editors, Proceedings of the 6th
International Workshop on Quantum Physics and Logic (QPL’09), volume 270.2 of Electronic Notes
in Theoretical Computer Science, pages 251–261. Elsevier, 2011.

[10] U. Dal Lago and M. Zorzi. Probabilistic operational semantics for the lambda calculus. RAIRO
Theoretical Informatics and Applications, 46(3):413–450, 2012.

[11] A. Di Pierro, C. Hankin, and H. Wiklicky. Probabilistic ⁄-calculus and quantitative program analysis.
Journal of Logic and Computation, 15(2):159–179, 2005.

[12] A. Dı́az-Caro, P. Arrighi, M. Gadella, and J. Grattage. Measurements and confluence in quantum
lambda calculi with explicit qubits. In B. Coecke, I. Mackie, P. Panangaden, and P. Selinger, editors,
Proceedings of the Joint 5th International Workshop on Quantum Physics and Logic and 4th Workshop
on Developments in Computational Models (QPL/DCM’08), volume 270.1 of Electronic Notes in
Theoretical Computer Science, pages 59–74. Elsevier, 2011.

[13] O. M. Herescu and C. Palamidessi. Probabilistic asynchronous fi-calculus. In J. Tiuryn, editor,
Foundations of Software Science and Computation Structures, volume 1784 of Lecture Notes in
Computer Science, pages 146–160, 2000.

[14] G. Huet. Confluent reductions: Abstract properties and applications to term rewriting systems:
Abstract properties and applications to term rewriting systems. Journal of the ACM, 27(4):797–821,
1980.

[15] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. In Proceedings
of the 11th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL
’84, pages 83–92. ACM, 1984.

[16] D. Kozen. Semantics of probabilistic programs. Journal of Computer and System Sciences, 22(3):328–
350, 1981.

[17] G. Mart́ınez. Confluencia en sistemas de reescritura probabilista. Master’s thesis, Universidad
Nacional de Rosario, Argentina, Mar. 27, 2017. Available at https://dcc.fceia.unr.edu.ar/es/lcc/

tesinas-grado/tesinas/confluencia-en-sistemas-de-reescritura-probabilista.

[18] M. H. A. Newman. On theories with a combinatorial definition of “equivalence”. Annals of
Mathematics, 43(2):223–243, 1942.

[19] A. K. Pati and S. L. Braunstein. Impossibility of deleting an unknown quantum state. Nature, 404:164–
165, 2000.

[20] G. E. Peterson and M. E. Stickel. Complete sets of reductions for some equational theories. Journal
of the ACM, 28(2):233–264, 1981.

[21] N. Ramsey and A. Pfe�er. Stochastic lambda calculus and monads of probability distributions.
In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’02, pages 154–165, New York, NY, USA, 2002. ACM.

[22] D. S. Scott. Stochastic ⁄-calculi: An extended abstract. Journal of Applied Logic, 12(3):369–376, 2014.

[23] P. Selinger and B. Valiron. A lambda calculus for quantum computation with classical control. In
P. Urzyczyn, editor, Proceedings of the 7th International Conference on Typed Lambda Calculi and
Applications (TLCA’05), volume 3461 of Lecture Notes in Computer Science, pages 354–368. Springer-
Verlag, 2005.

[24] A. Simpson. Reduction in a linear lambda-calculus with applications to operational semantics. In
J. Giesl, editor, Proceedings of the 16th International Conference on Term Rewriting and Applications
(RTA’05), volume 3467 of Lecture Notes in Computer Science, pages 219–234. Springer-Verlag, 2005.

[25] A. van Tonder. A lambda calculus for quantum computation. SIAM Journal on Computing, 33:1109–
1135, 2004.

[26] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299:802–803, 1982.

16

Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Machine-checked proof of the Church-Rosser

theorem for the Lambda Calculus using the

Barendregt Variable Convention in

Constructive Type Theory

Ernesto Copello

1
Nora Szasz

´

Alvaro Tasistro

2

Universidad ORT Uruguay
Montevideo, Uruguay

Abstract

In this article we continue the work started in [3], deriving in Constructive Type Theory new induction
principles for the �-calculus, using (the historical) first order syntax with only one sort of names for both
bound and free variables, and with ↵-conversion based upon name swapping. The principles provide a
flexible framework for mimicking pen-and-paper proofs within the rigorous formal setting of a proof assistant.
We here report on one successful application, namely a complete proof of the Church-Rosser theorem. The
whole development has been machine-checked using the system Agda [5].

Keywords: Lambda Calculus, Formal Metatheory, Type Theory

1 Introduction

Let us consider the following definition of the Lambda Calculus terms:

M,N ::= x | MN | �x.M

Fig. 1. Lambda Calculus syntax

This syntax has been considered too concrete a level on which to formally develop
the metatheory of the calculus. The reason is that there is no significant di↵erence
between terms that di↵er only in the choice of the names of the bound variables,
i.e., that are ↵-equivalent; and therefore it becomes natural to identify such terms
already at the syntactic level. In the classical setting this amounts to working on
↵-equivalence classes of terms. One way to do this is to define functions and reason
generally on terms by choosing adequate representatives of the classes in question.

1 Partially supported by a scholarship granted by Agencia Nacional de Investigación e Innovación, Uruguay
2 Email: copello,szasz,tasistro@ort.edu.uy

c�2017 Published by Elsevier Science B. V.

Copello, Szasz, Tasistro

A prominent illustration of this practice is given in Barendregt’s book [1], and the
criterion followed to choose the representatives has thenceforth received as standard
name the Barendregt Variable Convention (BVC).

In previous work [3], we have justified a form of the BVC in Constructive Type
Theory by the following method: We introduced a recursion principle allowing
to define strongly ↵-compatible functions on concrete terms, i.e. functions on the
syntax introduced above that equate ↵-equivalent terms. This principle allows to
specify the value of the function in the case of abstractions by considering only the
case in which the bound variable does not belong to a given list of names. The
principle is actually implemented by computing, for each given term, a canonical ↵-
equivalent representative that satisfies such restriction. Then, the specified function
actually operates on the computed representative. The ↵-conversion is implemented
using the elementary operation of name swapping as in nominal techniques (see for
instance [7] and [8]). Using this principle we have been able to define e.g. the
substitution operation by considering, for abstractions, only the convenient case in
which variable capture is avoided.

In addition, we also introduced a corresponding induction principle, which is
presented in Figure 2. This principle requires the property being proved to be
↵-compatible, that is, preserved by ↵-conversion. Or, in other words, it must be
a property of the abstract terms arising from the identification of ↵-equivalent
concrete ones. As before, the induction principle allows one to prove the case of
abstraction considering only the case in which the bound name does not belong to
a given list of names:

P ↵-compatible
(8x) P (x)
(8M,N) (P (M) ^ P (N)) P (MN))
(9xs, 8M, 8x 62xs)(P (M)) P (�x.M))
(8M) P (M)

Fig. 2. Alpha induction principle

The principles referred to above were actually derived from the ordinary struc-
tural induction on concrete terms. As first applications, we developed, using the
Agda proof assistant [5], some metatheoretical results concerning substitution that
will be mentioned in the next section.

In this work we present strengthened ↵-induction principles on �-terms that
can be used to satisfactorily deal with relations whose definitions involve name
swapping, and that allow to avoid finite lists of names in binding positions, not
just in abstractions but in any term. In this way we can scale the metatheory of
the �-calculus up to the Church-Rosser theorem, formally reproducing a form of
the BVC in the formalisation. The set of obtained principles provides a flexible
framework quite able to pleasantly mimic pen-and-paper proofs within the rigorous
formal setting of a proof assistant.

The work that stands closest to the present one is [10], where Urban and Norrish
show how to emulate the BVC when performing induction on relations over �-terms.
They illustrate the use of the induction principles by proving the substitution lemma

2

Copello, Szasz, Tasistro

for parallel reduction, and the weakening lemma of the typing relation. They present
two induction principles on relations, one for the parallel reduction relation, and
another one for the typing relation. When carrying out a proof by induction on these
relations they are able to avoid a finite set of variable names as binders. To prove
these strengthened induction principles they require that the relation definition
rules satisfy the following preconditions: all functions and side conditions should be
equivariant (i.e., preserved by name permutation), the side conditions must imply
that all bound variables do not occur free in the conclusions, and all bound variables
must be distinct. As a consequence, they have to modify the definition of the original
relations to satisfy these preconditions in order to be able to prove the soundness
of their induction principles.

All the definitions and proofs presented in the present article have been fully
formalised in Constructive Type Theory [4] and machine-checked employing the
system Agda [5]. The corresponding code is public, and it is available at:

https://github.com/ernius/formalmetatheory-nominal-Church-Rosser

In the subsequent text we give the proofs in English with a considerable level of
detail so that they serve for making it clear how their formalisation was carried
out.

The structure of the following sections is as follows: in Section 2 we recall the
basic concepts of the �-calculus, and some definitions and results from our previous
work that are necessary for a better understanding of the material presented in this
one. In Section 3 we introduce two new strengthened ↵-induction principles on �-
terms that will be useful to prove the main results of this work. Then, in Section 4
we present the notion of �-reduction and prove the Church-Rosser theorem by using
the standard method due to Tait and Martin-Löf which involves the formulation and
study of the parallel �-reduction. The overall conclusions are exposed in Section 5.

2 Preliminaries

Variables belong to a denumerable set of names, and terms are inductively defined
as in Figure 1.

The freshness relation states that a variable does not occur free in a term:

Definition 2.1 [Freshness]

x 6= y

x#y

x#M x#N

x#MN

x#M

x#�y.M

x#�x.M

x 62bM denotes that the variable x does not occur in a binding position in term M :

Definition 2.2 [62b]

x 62b y
x 62b M x 62b N

x 62b MN

x 6= y x 62b M

x 62b �y.M

3

Copello, Szasz, Tasistro

Next comes the operation of swapping of names. A finite sequence (composi-
tion) of name swaps constitutes a finite name permutation, which is the renaming
mechanism to be used on terms. The action of swapping is first defined on names
themselves:

Definition 2.3 [Swapping]

(x y) z =

8
<

:

y if z = x

x if z = y

z if x 6= z ^ y 6= z,

and then it is directly extended to terms by swapping all names occurring in a term,
including abstraction positions.

The permutation operation is just defined as the sequential application of a
list of swaps. We usually use ⇡ to denote permutations, and the application of
a permutation ⇡ to a term M is written ⇡M . (x y)⇡ denotes the permutation
consisting of the swap (x y) followed by the permutation ⇡.

In the next definition we give a syntax-directed definition of ↵-conversion (⇠↵)
based on the swapping operation.

Definition 2.4 [Alpha equivalence relation]

(⇠↵v)
x ⇠↵ x

M⇠↵M
0

N⇠↵N
0

(⇠↵a)
MN ⇠↵ M

0
N

0

(8z 62 xs) (x z)M ⇠↵ (y z)N
(⇠↵�)

�x.M ⇠↵ �y.N

In [3] we proved that this is an equivalence relation, preserved by the permutation
operation (i.e., equivariant).

The substitution operation is defined using the ↵-compatible recursion principle
mentioned in the previous section, and as a direct consequence of this, the following
lemma is automatically derived.

Lemma 2.5 (↵-compatibility of substitution)

M ⇠↵ M

0) M [x:=N] = M

0[x:=N].

The following results are successfully proved using the induction principles of [3].

Lemma 2.6 (Substitution preserves ↵-conversion)

N ⇠↵ N

0) M [x:=N] ⇠↵ M [x:=N

0].

Lemma 2.7 (Substitution under permutation)

⇡ (M [x:=N]) ⇠↵ (⇡ M)[(⇡ x):=(⇡ N)].

The next lemma shows that substitution commutes with abstraction up to
↵-conversion. This is so because the hypotheses ensure a fresh enough binder.

4

Copello, Szasz, Tasistro

Lemma 2.8 (Substitution commutes with abstraction)

x 6= y ^ x#N) (�x.M)[y:=N] ⇠↵ �x.(M [y:=N]).

Lemma 2.9 (Substitution composition)

x 6= y ^ x#P) M [x:=N][y:=P] ⇠↵ M [y:=P][x:=N [y:=P]].

The following result was not proved in our previous work, so we exhibit it in
detail.

Lemma 2.10 (Swapping substitution variable)

x#M) ((x y)M)[x:=N] ⇠↵ M [y:=N].

Proof. We use our ↵-induction principle in Figure 2. First, for arbitrary names
x, y and term N we consider the following predicate on terms:

⇧(M) ⌘ x#M) (x y)M [x:=N] ⇠↵ M [y:=N].

We have to prove that ⇧ is ↵-compatible, that is, if M⇠↵P and ⇧(M), then ⇧(P).
Assume ⇧(M) and x#P . Then as freshness is preserved through ⇠↵, we have that
x#M . Then we proceed as follows:

((x y)P)[x:=N] = {⇠↵ equivariance and Lemma 2.5}
((x y)M)[x:=N] ⇠↵ {⇧(M) and x#M}

M [y:=N] = {Lemma 2.5}
P [y:=N].

Now we can proceed to the induction proper. We show the interesting case, namely
the one of abstractions: We have x#�z.M

0, where we choose z 62 {x, y}[fv(N). We
need to prove ((x y)(�z.M 0))[x:=N] ⇠↵ (�z.M 0)[y:=N]. As x#�z.M

0 and z 6= x

we get x#M

0. Then we can reason as follows:

((x y)(�z.M 0))[x:=N] = {def. of swap}
(�((x y)z).((x y)M 0))[x:=N] = {z 62 {x, y}}

(�z.((x y)M 0))[x:=N] ⇠↵ {Lemma 2.8}
�z.(((x y)M 0)[x:=N]) ⇠↵ {i.h.}

�z.(M 0[y:=N]) ⇠↵ {Lemma 2.8}
(�z.M 0)[y:=N]

2

The preceding proof illustrates the usual pen-and-paper informal practice, which
uses the BVC to assume binders fresh enough in some defined context, allowing us
to apply substitution in a naive way without need of renaming.

The next result is a quite direct consequence of the previous lemma:

Lemma 2.11

x#�y.M) ((x y)M)[x:=N] ⇠↵ M [y:=N].

3 Alpha Induction Principles

In this section we introduce two new ↵-induction principles. The first one is pre-
sented in Figure 3.

It is a strengthened version of the one shown in Figure 2, where the induction

5

Copello, Szasz, Tasistro

P ↵-compatible
(8x) P (x)
(8M,N) (P (M) ^ P (N)) P (MN))
(9xs, 8M, 8x 62xs) ((8⇡) P (⇡ M)) P (�x.M))
(8M) P (M)

Fig. 3. Alpha induction principle with permutations

hypothesis of the abstraction case allows us to assume the property for all permu-
tations of the body. This principle is useful to deal with relations which make use
of the permutation operation in their definitions. We will show an example of this
situation in the proof of Lemma 4.7 in the next section.

The ↵-induction principle with permutations shown in Figure 3 is proved using
the one in Figure 4, which was derived in [3] from simple structural induction on
�-terms, in very much the same way as complete induction on natural numbers is
derived from ordinary mathematical induction.

(8x) P (x)
(8M,N) (P (M) ^ P (N)) P (MN))
(8M,x) ((8⇡) P (⇡ M)) P (�x.M))
(8M) P (M)

Fig. 4. Strong permutation induction principle

Proof. (Alpha induction principle with permutations).
The variable and application cases are direct. For the abstraction case, given any
term M and variable x, we must prove P (�x.M) knowing:

(8⇡) P (⇡ M) (1a)

(9xs, 8M 0
, 8y 62xs) ((8⇡0) P (⇡0

M

0)) P (�y.M 0)) (1b)

Let xs be a list of names as in (1b). Let us further pick y not in xs and also
fresh in �x.M . Then for all M 0

,⇡

0, P (⇡0
M

0)) P (�y.M 0) holds. So taking M

0 =
(x y)M we have that (8⇡0)P (⇡0 ((x y)M))) P (�y.(x y)M). Now, as ⇡0((x y)M) =
((x y)⇡0)M , we can use (1a) to get P (�y.(x y)M) from (1b), and finally P (�x.M)
because P is ↵-compatible and �x.M ⇠↵ �y.(x y)M . This last ↵-equivalence holds
because we have chosen y fresh in �x.M . 2

The next induction principle (Figure 5) enables us to assume bound variables
not in a given finite list of names xs through the entire induction, and not only for
the abstraction case.

P ↵-compatible
(8x) P (x)
(8M,N) ((8y 2 xs, y 62b MN) ^ P (M) ^ P (N)) P (MN))
(8M,x) ((8y 2 xs, y 62b �x.M) ^ P (M)) P (�x.M))
(8M) P (M)

Fig. 5. Strengthened ↵-induction principle

6

Copello, Szasz, Tasistro

Proof. (Strengthened ↵-induction principle).
To derive this principle we introduce a rewrite function such that, given a list of
names xs and a term M , rewrite(xs,M) returns a term ↵-convertible with M that
does not contain any element of xs as binder.
To prove P (M) for any term M , we proceed as follows. Given a list of names xs,
an ↵-compatible predicate P , and the following hypotheses:

(8x) P (x)
(8M,N) ((8y 2 xs, y 62b MN) ^ P (M) ^ P (N)) P (MN))
(8M,x) ((8y 2 xs, y 62b �x.M) ^ P (M)) P (�x.M))

(2)

we prove the following predicate ⇧ by structural induction on terms:

⇧(M) = ((8x2xs)) x 62b M)) P (M) (3)

Then, we use this predicate ⇧ on the term rewrite(xs,M), which has no bound
variables in xs to obtain P (rewrite(xs,M)). Finally, as P is ↵-compatible and
rewrite(xs,M) ⇠↵ M we get that P (M) holds for any M .

In turn, the proof of ⇧(M) by structural induction on M is straightforward
because of the syntax directed definition of 62b:

• Variable case: Direct.

• Application case: We need to prove ⇧(MN) for any M,N , such that ⇧(M) and
⇧(N) hold. That is, we have to prove P (MN), given that any variable x in xs

satisfies that x 62b MN . Then, by the syntax directed definition of 62b, we directly
have that x 62b M and x 62b N , and so we are able to use the induction hypothesis
on M and N to get P (M) and P (N). So, we have all the premises in the second
assertion in (2) hold, and hence its conclusion P (MN).

• Abstraction case: We must prove ⇧(�y.M), that is, we need to prove P (�y.M)
knowing that every variable x in xs satisfies that x 62b �y.M . By the definition of
62b, we have that x 6= y and x 62b M . We can apply the last result to the induction
hypothesis ⇧(M) to get P (M). Finally, we get the desired result using the third
assertion in (2).

2

4 Parallel Beta Reduction

The �-reduction relation (!�) is defined as the compatible (with the syntactic
constructors) closure of the �-contraction (�x.M)N .� M [x:=N]. The classical
proof of confluence of �-reduction by Tait and Martin-Löf rests upon the property of
confluence of the so-called parallel reduction, which can apply several �-contractions
“in parallel” in one single step. We present our definition in Figure 6.

The first three rules have the same form as the ones defining the ↵-conversion
relation presented in Definition 2.4, which evidences that we want this parallel
reduction to be compatible with ↵-conversion, that is, if M ◆ N , M ⇠↵ M

0 and
N ⇠↵ N

0 then M

0 ◆ N

0. We will prove this property in lemmas 4.5 and 4.6.
Finally, note that the �-rule has an extra premise involving ↵-conversion. The

7

Copello, Szasz, Tasistro

(◆v)
x ◆ x

M ◆ M

0
N ◆ N

0
(◆a)

MN ◆ M

0
N

0

(9xs, 8z 62 xs) (x z)M ◆ (y z)N
(◆�)

�x.M ◆ �y.N

�x.M ◆ �y.P

0
N ◆ P

00
P

0[y:=P

00] ⇠↵ P

(◆�)
(�x.M)N ◆ P

Fig. 6. Parallel reduction relation

reason for this is that our substitution operation modifies the bound names in
terms as a consequence of being defined with our ↵-recursion principle. Without
that additional premise we would not be able to prove that ◆ is ↵-compatible on
its right hand side.

We start by proving some basic properties:

Lemma 4.1 (Reflexivity of ◆)

M ◆ M .

Proof. Direct application of the permutation induction principle in Figure 4. 2

Lemma 4.2 (Equivariance of ◆)

M ◆ N) ⇡M ◆ ⇡N .

Proof. By induction on the definition of ◆.
The variable and application cases are direct. In the abstraction case, we have
to prove �(⇡ x).(⇡ M) ◆ �(⇡ y).(⇡ N) from the premise of the rule (◆�) and
the corresponding induction hypothesis. We can in addition exclude the variable
z mentioned in the premise from the domain of the permutation ⇡ and reason as
follows:

(x z)M ◆ (y z)N) {i.h.}
⇡((x z)M) ◆ ⇡((y z)N)) {def. of perm.}
((⇡ x) (⇡ z))(⇡M)◆((⇡ y) (⇡ z))(⇡N)) {as z 62 dom(⇡) then (⇡ z) = z}
((⇡ x) z)(⇡ M) ◆ ((⇡ y) z)(⇡ N)) {(◆ �) rule}
�(⇡ x).(⇡ M) ◆ �(⇡ y).(⇡ N).

In the (◆ �) case we must prove (�(⇡ x).(⇡ M))(⇡ N) ◆ ⇡ P from premises
�x.M ◆ �y.P

0, N ◆ P

00 and P ⇠↵ P

0[y:=P

00]. By direct application of the
induction hypotheses corresponding to the first two premises we get:

�(⇡ x).(⇡ M) ◆ �(⇡ y).(⇡ P

0)

and ⇡ N ◆ ⇡ P

00 (4)

Then, using the third premise we can reason as follows:

P ⇠↵ P

0[y:=P

00]) {⇠↵ equivariance}
⇡ P ⇠↵ ⇡ (P 0[y:=P

00])) {Lemma 2.7}
⇡ P ⇠↵ (⇡ P

0)[(⇡ y):=(⇡ P

00)]) {⇠↵ symmetry}
(⇡ P

0)[(⇡ y):=(⇡ P

00)] ⇠↵ ⇡ P

8

Copello, Szasz, Tasistro

We obtain the desired result using the (◆�) rule with (4) and this last result as
premises. 2

As a direct consequence of the previous lemma we derive the following result:

Corollary 4.3 (Preservation of ◆ under abstraction)

M ◆ N) �x.M ◆ �x.N .

The following lemmas state that our parallel reduction relation is preserved by
↵-equivalence. Both results are proved by easy inductions on the parallel reduction
relation.

Lemma 4.4 (Right ↵-compatibility of ◆)

M ◆ N ^N ⇠↵ P) M ◆ P .

Lemma 4.5 (Left ↵-compatibility of ◆)

M ⇠↵ N ^N ◆ P) M ◆ P .

As ◆ is reflexive, we can now prove in a direct manner that ↵-conversion is
included in the parallel reduction.

Lemma 4.6

⇠↵ ✓ ◆ .

Proof. Given M ⇠↵ N , as ◆ is reflexive by Lemma 4.1, we also know M ◆ M .
Then using Lemma 4.4 we obtain the desired result.
2

As ◆ basically applies �-contractions, no free variable should be introduced at
any step, therefore freshness is preserved.

Lemma 4.7 (◆ preserves freshness)

x#M ^M ◆ N) x#N .

Proof. We use the ↵-induction principle with permutations (fig. 3) on the term M .
In order to apply this principle we must prove, for any variable x, that the predicate

⇧(M) ⌘ (8N) (x#M ^M ◆ N) x#N).

is ↵-compatible, which follows from the ↵-compatibility of both freshness and
parallel reduction. Now, for the main result, we only show the interesting ab-
straction case of the induction (i.e. for a term �y.M

0). We therefore have that
x#�y.M

0 and �y.M

0 ◆ �z.N

0, and we must prove x#�z.N

0. Now, �y.M 0 ◆ �z.N

0

must be the result of an application of the (◆�) rule, so we get its premise
(8w 62xs) (y w)M 0 ◆ (z w)N 0. The ↵-induction principle allows us to exclude
some variables for the abstraction case, so we can also assume y 6= x. Using this
inequality and the hypothesis x#�y.M

0 we get by definition that x#M

0. Now let
u be a variable such that u#N

0
, u 62 xs and u 6= x; then x#(y u)M 0 because x 6= y,

x 6= u and x#M

0. We can apply the premise of the (◆�) rule with u, as u 62 xs,
and we get (y u)M 0 ◆ (z u)N 0. We use the induction hypothesis on M

0 and per-
mutation (y u) with the previous two results to get x #(z u)N 0. We also have that
�u.(z u)N 0 ⇠↵ �z.N

0 because u #N

0. Then, as ⇠↵ preserves freshness, we get the
desired result. 2

9

Copello, Szasz, Tasistro

We can now prove the following inversion lemmas, which state that the original
definition of parallel reduction by Takahashi [9] (which we note ◆T in the next
definition) can be derived from ours. These lemmas will be useful in the proof of
the diamond property of our relation ◆.

x ◆T x

M ◆T M

0
N ◆T N

0

MN ◆T M

0
N

0
M ◆T M

0

�x.M ◆T �x.M

0

M ◆T M

0
N ◆T N

0

(�x.M)N ◆T M

0[x:=N

0]

Fig. 7. Takahashi’s parallel reduction relation.

Lemma 4.8 (◆ �-inversion)

�x.M ◆ M

0) (9M 00) (M ◆ M

00 ^ �x.M ◆ �x.M

00 ^ M

0 ⇠↵ �x.M

00).

Proof. By definition of ◆ it must be the case that �x.M ◆ M

0 is a result of an
application of (◆ �) rule; then we have that M 0 is in an abstraction �y.N , and that
there exists a list of variables xs such that (8z 62xs) (x z)M ◆ (y z)N . We take
M

00 = (x y)N , and prove that M 00 satisfies the three properties of the thesis.

• Let z be a variable such that z 62 xs and z#�y.M

0. By definition of #, x#�x.M ,
and then, as parallel reduction preserves freshness, x#�y.N also holds. So:

(x z)M ◆ (y z)N) {◆ equivariance}
(x z)(x z)M ◆ (x z)(y z)N) {swap self inverse}
M ◆ (x z)(y z)N) {(*)}
M ◆ (x y)N

(*) Here we apply Lemma 4.4 with the premise (x z)(y z)N ⇠↵ (x y)N . This
swapping cancellation property requires z and x to be fresh enough, as it is the
case.

• We apply Lemma 4.4 with �x.M ◆ �y.N and the ↵-equivalence obtained above
to prove �x.M ◆ �x.(x y)N .

• To prove �y.N ⇠↵ �x.(x y)N , as x is fresh in �y.N , we swap y with x in this
term to get the ↵-equivalent term �x.(x y)N (Lemma 4.2).

2

Lemma 4.9 (◆ �-inversion)

If (�x.M)N ◆ P is obtained by application of the (◆ �) rule in the following way:

�x.M ◆ �y.M

0
N ◆ N

0
M

0[y:=N

0] ⇠↵ P

(◆�)

(�x.M)N ◆ P

then, (9M 00) (�x.M ◆ �x.M

00 ^ M

00[x:=N

0] ⇠↵ P).

Proof. We prove that M 00 = (y x)M 0 satisfies the thesis.

•
x#�x.M and �x.M ◆ �y.M

0 so by Lemma 4.7 x#�y.M

0. We can then swap
y with x in the last term and obtain the ↵-equivalent term �x.(y x)M 0, using
Lemma 4.2. Then, by Lemma 4.4 we get �x.M ◆ �x.(y x)M 0.

10

Copello, Szasz, Tasistro

• For the second condition we reason as follows:

((y x)M 0)[x:=N

0] = {swap commutativity}
((x y)M 0))[x:=N

0] ⇠↵ {corollary 2.11}
M

0[y:=N

0] ⇠↵ {hypothesis}
P

2

Theorem 4.10 (◆ substitution lemma)

M ◆ M

0 ^N ◆ N

0) M [x:=N] ◆ M

0[x:=N

0].

The substitution lemma for parallel reduction is the crux of the Church-Rosser
theorem, and the place in which our ↵-induction principles in [3] fail to capture
the BVC. If we perform induction on the term M , the problem appears in the
beta application case, specifically when the term is a redex. We then have M =
(�y.P)Q, and we need to prove ((�y.P)Q)[x:=N] ◆ R[x:=N

0]. But, as we are in
the application case of the induction, the original ↵-induction principle gives no
freshness information about the binder y. The use of the BVC would allow us to
choose y di↵erent from x and fresh in N , and with those freshness conditions we
could push the substitution inside the abstraction without any variable capture by
the use of Lemma 2.8. We next use our strengthened ↵-induction principle presented
in Figure 5 to prove this result.

Proof. Given terms N,N

0 such that N ◆ N

0 , and a variable x, we consider the
following predicate on terms:

⇧(M) ⌘ (8M 0) (M ◆ M

0) M [x:=N] ◆ M

0[x:=N

0]).

⇧ is ↵-compatible, which is a direct consequence of both substitution and ◆ being
↵-compatible (lemmas 2.5,4.4,4.5). Then we can use our strengthened ↵-induction
principle to prove ⇧ by induction on the term M , excluding the variable x, and the
free variables in terms N and N

0 from the binders in M . We show the proof of the
interesting application and abstraction cases.

• Application case: we prove (8P,Q) ((8z 2 {x}[fv(N)[fv(N 0), z 62b P Q) ⇧(P)^
⇧(Q)) ⇧(P Q)). We have two subcases according to which rule is used to
reduce the application P Q.
· (◆a) rule subcase: we have that P ◆ P

0 and Q ◆ Q

0 and we need to prove
that (P Q)[x:=N] ◆ (P 0

Q

0)[x:=N

0]. The proof is a direct application of the
(◆a) rule to the induction hypotheses.

· (◆�) rule subcase: given (�y.P)Q ◆ R we must prove ((�y.P)Q)[x:=N] ◆
R[x:=N

0]. We use the inversion Lemma 4.9 to obtain that there exists P 00 such
that �y.P ◆ �y.P

00 ^ P

00[y:=Q

0] ⇠↵ R. Next, as we have assumed the binder y
di↵erent from x and also fresh in N and N

0, we can reason as follows:

�y.P ◆ �y.P

00) {i.h.}
(�y.P)[x:=N] ◆ (�y.P 00)[x:=N

0]) {Lemma 2.8}
�y.(P [x:=N]) ◆ �y.(P 00[x:=N

0])

11

Copello, Szasz, Tasistro

By the induction hypothesis we know Q[x:=N] ◆ Q

0[x:=N

0]. So if we prove:

P

00[x:=N

0][y:=Q

0[x:=N

0]] ⇠↵ R[x:=N

0] (5)

we will be able to apply the (◆ �) rule and get that (�y.(P [x:=N]))(Q[x:=N])
◆ R[x:=N

0]. Then, using the freshness premises, we can pull out the sub-
stitution operation on the left side of this parallel reduction, and using the
Lemma 4.5, of ↵-compatibility of ◆, we finally get the desired result.
It just remains to prove (5) to end the proof of this subcase. Again, here the

classical informal proofs use the BVC. We can also mimic this practice in this
case since our induction principle gives us a binder y distinct form x and fresh
in N

0. Then, we have the freshness premises to successfully apply the sub-
stitution composition Lemma 2.9 and conclude this proof in the following steps:

P

00[x:=N

0][y:=Q

0[x:=N

0]] ⇠↵ {Lemma 2.9}
P

00[y:=Q

0][x:=N

0] = {Lemma 2.5 and P

00[y:=Q

0] ⇠↵ R }
R[x:=N

0]

• Abstraction case: we have to prove (8P, y) (8z 2 {x} [fv(N) [fv(N 0), z 62b

�y.P) ^ ⇧(P)) ⇧(�y.P). We apply the inversion Lemma 4.9 to the hypothesis
�y.P ◆ Q to get that there exists Q

0 such that: P ◆ Q

0, �y.P ◆ �y.Q

0 and
Q ⇠↵ �y.Q

0. Then, we can conclude the proof in the following way:

P ◆ Q

0) {ind. hyp.}
P [x:=N] ◆ Q

0[x:=N

0]) {◆ equivariance}
(y z)(P [x:=N]) ◆ (y z)(Q0[x:=N

0])) {(◆�) rule}
�y.P [x:=N] ◆ �y.Q

0[x:=N

0]) {Lemma 2.8}
(�y.P)[x:=N] ◆ (�y.Q0)[x:=N

0]) {Lemma 2.5 and Q ⇠↵ �y.Q

0}
(�y.P)[x:=N] ◆ Q[x:=N

0]
2

In [10], the authors proceed by induction on the relation, so x,N,N

0 are
universally quantified over the �-contraction rule definition, and they are forced to
add the same freshness premises that we were able to assume in this proof –by the
use of our strengthened ↵-induction principle– directly into the premises of their
modified beta rule of the parallel relation. In contrast, we are performing induction
on the term M to prove the predicate ⇧, and hence we are able to maintain those
variables as a fixed context outside the definition of ⇧. Then by the use of our
strengthened ↵-induction principle we are able to mimic the BVC also in the ap-
plication case of the proof, specifically in the previously exposed (◆�) rule subcase.

Finally, we can prove the diamond property of the parallel reduction. Instead
of directly proving it by induction on terms (which can easily be done), we will
follow the shorter method by Takahashi [9]. For this we first define the “star”
operation (Figure 8), such that for any �-term M , M⇤ is the result of contracting
all the �-redexes existing in M simultaneously. Then we prove that for any terms
M,N , if M ◆ N , then N ◆ M

⇤ (Lemma 4.11). Finally, the diamond property of
◆ follows directly as a corollary of this result.

12

Copello, Szasz, Tasistro

x

⇤ = x

(�x.M)⇤ = �x.M

⇤

(x M)⇤ = x M

⇤

((M1M2) M3)⇤ = (M1M2)⇤M⇤
3

((�x.M1) M2)⇤ = M

⇤
1 [x := M

⇤
2]

Fig. 8. Takahashi’s star function

Lemma 4.11 (Star property)

M ◆ N) N ◆ M

⇤
.

Proof. By structural induction on M . We show the interesting application and
abstraction cases.

• Abstraction case: we have to prove that N ◆ (�x.M)⇤ = �x.M

⇤, knowing that
�x.M ◆ N holds. We can use the inversion Lemma 4.8 on the latter to obtain
the existence of the term N

0 such that: N ⇠↵ �x.N

0 and M ◆ N

0. We can
now apply the induction hypothesis, and then corollary 4.3 to M ◆ N

0, and
obtain �x.N

0 ◆ �x.(M⇤). This last result directly gives us the desired result by
Lemma 4.5 since we know that N ⇠↵ �x.N

0.

• Application case: we have three subcases. The first two correspond to the third
and fourth lines of the star operation definition, and are directly derived from the
induction hypotheses.
Finally, the redex case can be subdivided accordingly to which rule, (◆a) or
(◆�), is used in the last step of its parallel reduction.
· (◆a) rule subcase: we have that �x.M ◆ N and M

0 ◆ N

0, and we need to
prove that NN

0 ◆ ((�x.M)M 0)⇤ = M

⇤[x := M

0⇤]. We begin applying the
inversion lemma 4.8 to the hypothesis �x.M ◆ N to get that there exists
N

00 such that N ⇠↵ �x.N

00 and M ◆ N

00. We can now apply the induction
hypothesis to the latter, and then the corollary 4.3 to conclude �x.N 00 ◆ �x.M

⇤.
Besides, we can also apply the induction hypothesis to the premise M 0 ◆ N

0 to
get N 0 ◆ M

0⇤. We can combine the last two inferred parallel reductions, using
the (◆�) rule, and derive that (�x.N 00)N 0 ◆ M

⇤[x := M

0⇤] holds. From this
result we directly get the desired result just noticing that N N

0 ⇠↵ (�x.N 00)N 0,
because N ⇠↵ �x.N

00 and N

0 ⇠↵ N

0. Hence, by left ↵-compatibility of the
parallel relation (Lemma 4.5) we finish this subproof case.

· (◆�) rule subcase: we have the following hypotheses: �x.M ◆ �yN , M 0 ◆ N

0

and N [y := N

0] ⇠↵ P , and we need to prove that P ◆ M

⇤[x := M

0⇤] holds.
We proceed analogously to the previous subcase and derive that there exists
N

00 such that �y.N ⇠↵ �x.N

00, N 00 ◆ M

⇤ and N

0 ◆ M

0⇤. Then we apply the
substitution lemma for ◆ (Lemma 4.10) to obtain N

00[x := N

0] ◆ M

⇤[x :=
M

0⇤]. Finally, we can use left ↵-compatibility Lemma 4.5 to finish the proof if
we prove that P ⇠↵ N

00[x := N

0]. Next we prove that this last alpha equivalence
holds:

13

Copello, Szasz, Tasistro

P ⇠↵ {hypothesis}
N [y := N

0] ⇠↵ {by Lemma 2.11 as x#�y.N}
((x y)N)[x := N

0] = {by Lemma 2.5 as (x y)N ⇠↵ N

00}
N

00[x := N

0]

In the previous derivation we used the freshness condition x#�y.N , which fol-
lows from �y.N ⇠↵ �x.N

00, x#�x.N

00, and that freshness is preserved under
↵-conversion.

2

As a direct consequence of the previous lemma, we have the following result:

Lemma 4.12 (Diamond property of ◆)

M ◆ N ^M ◆ P) 9Q,N ◆ Q ^ P ◆ Q

Definition 4.13 [Confluence] A relation is confluent if its reflexive and transitive
closure has the diamond property.

We omit the proof details of the next results because they do no deal with
�-terms. They are proved in a direct way as in the classical literature.

Lemma 4.14 If a relation R has the diamond property then it is confluent

Lemma 4.15 If a reduction relation R is confluent, then so is its reflexive and

transitive closure R

⇤
.

As a direct application of the preceding two lemmas, we obtain:

Lemma 4.16 (Confluence of ◆)

◆⇤
is confluent.

If we now consider the �-reduction !� , we have:

Lemma 4.17

(!� [⇠↵)⇤ = ◆⇤

Proof. We prove the double inclusion. To prove (!� [⇠↵)⇤ ✓ ◆⇤, it is enough
to prove (!� [⇠↵) ✓ ◆. By Lemma 4.6 we know ⇠↵✓ ◆, and !�✓ ◆ can be
proved by a direct induction on the !� reduction relation.
Finally, to prove ◆⇤✓ (!� [⇠↵)⇤ we first prove ◆ ✓ (!� [⇠↵)⇤ by a direct
induction on ◆. Then, by monotonicity of ⇤ over ✓, we get ◆⇤✓ ((!� [⇠↵)⇤)⇤,
and the desired result follows from idempotence of ⇤. 2

Using the last two lemmas we finally arrive at the Church-Rosser theorem.

Theorem 4.18 (Church-Rosser)

The relation (!� [⇠↵) is confluent.

5 Conclusions

We have introduced principles of induction on terms of the Lambda Calculus that
allow to reason on the abstract terms that arise by identifying ↵-equivalent concrete

14

Copello, Szasz, Tasistro

ones. The principles work for ↵-compatible predicates, i.e. properties preserved by
↵-conversion, and allow to carry out the corresponding proofs by choosing conve-
nient representatives of the abstract terms in question, namely by avoiding names
in binding positions belonging to explicitly provided finite lists. We have derived
these principles ultimately from the ordinary structural induction on (concrete)
terms. Therefore we have provided a full justification of this form of the Barendregt
Variable Convention (BVC). The whole work has been carried out in Constructive
Type Theory —and machine-checked using the system Agda— without modifying
the ordinary definitional equality of terms or formulating any kind of quotient con-
struction. For the whole implementation to work it has proven essential to define
↵-conversion in terms of a fundamental operation of name swapping, as in Pitts and
Gabbay’s Nominal Techniques.

That the method of formalisation can be useful is maybe illustrated by our full
formal proof in Agda of the Church-Rosser theorem. In this paper we have given
a summarized description in English language of such proof, although showing the
details we believe essential for the reconstruction of the completely formal ver-
sion, which is publicly available at https://github.com/ernius/formalmetatheory-
nominal-Church-Rosser.

In our development, the definition of the parallel reduction relation has to be
formulated in such a way as to ensure that the relation is ↵-compatible. Because of
this, it looks more concrete than the classical one, as presented by Barendregt [1]
or Takahasi [9]. However, we are able to prove inversion lemmas that allow us
to recover the original parallel reduction definition, and from them we are able to
reproduce Takahashi’s proof of the diamond property.

In a similar work, Urban and Norrish [10] also have to modify the parallel
reduction relation in order to derive an ad-hoc induction principle on the parallel
reduction to successfully prove the substitution lemma for this relation. However,
they do not have to ensure the ↵-compatibility of the parallel relation because in
their formalisation ↵-convertible terms are syntactically equal, since they work at
the level of terms quotiented by ↵-equivalence, as explained in [6]. We believe
our approach is more direct and general, since we derive an induction principle on
simple terms, and not on the more complex relations over them. As shown in the
beta subcase of the proof of the substitution theorem, we are able to derive the
freshness conditions for the binders directly from our ↵-induction principle, as in
the BVC, and not explicitly imposing them in the definition of the parallel reduction
relation.

As another application of our method, we have also been able to (gently) for-
malise a proof of the Subject Reduction theorem for the system of assignment of
simple types, which is also publicly available at the aforementioned site. Finally, we
have generalised the techniques here exposed to a framework of regular trees with
binders, thereby obtaining pleasant treatments of e.g. metatheory of the System F
alongside that of the pure Lambda Calculus by way of instantiation. Report on this
work can be found in the first author’s upcoming PhD thesis [2].

15

Copello, Szasz, Tasistro

References

[1] Hendrik Barendregt. The �-calculus Its Syntax and Semantics, volume 103 of Studies in Logic and the
Foundations of Mathematics. North Holland, revised edition, 1984.

[2] Ernesto Copello. On the Formalisation of the Metatheory of the Lambda Calculus and Languages with
Binders. PhD thesis, PEDECIBA Informática, Uruguay. Submitted for revision, June 2017.

[3] Ernesto Copello, Álvaro Tasistro, Nora Szasz, Ana Bove, and Maribel Fernández. Alpha-structural
induction and recursion for the �-calculus in constructive type theory. Electronic Notes in Theoretical
Computer Science, 323:109 – 124, 2016.

[4] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Lecture Notes.
Bibliopolis, Naples, 1984. Notes by Giovanni Sambin.

[5] Ulf Norell. Towards a Practical Programming Language Based on Dependent Type Theory. PhD thesis,
Department of Computer Science and Engineering, Chalmers University of Technology, September 2007.

[6] Michael Norrish. Mechanising �-calculus using a classical first order theory of terms with permutations.
Higher-Order and Symbolic Computation, 19(2):169–195, 2006.

[7] Andrew M. Pitts. Nominal Logic, a First 0rder Theory of Names and Binding. Information and
Computation, 186(2):165–193, 2003.

[8] Andrew M. Pitts. Alpha-Structural Recursion and Induction. Journal of the ACM, 53(3):459–506,
May 2006.

[9] M. Takahashi. Parallel Reductions in �-Calculus. Information and Computation, 118(1):120 – 127,
1995.

[10] Christian Urban and Michael Norrish. A formal treatment of the Barendregt variable convention in
rule inductions. In Proceedings of the 3rd ACM SIGPLAN Workshop on Mechanized Reasoning About
Languages with Variable Binding, MERLIN ’05, pages 25–32, New York, NY, USA, 2005. ACM.

16

Counter-model Generation from Failed Proof

Searches in Propositional Minimal Implicational

Logic

?

Je↵erson de Barros Santos1, Bruno Lopes Vieira2, and Edward Hermann
Haeusler3

1
jefferson.santos@fgv.br FGV, Rio de Janeiro, Brazil

2
bruno@ic.uff.br UFF, Niterói, Brazil

3
hermann@inf.puc-rio.br PUC-Rio, Rio de Janeiro, Brazil

Abstract. This paper presents a new Termination and Completeness
Theorems for the sequent calculus LMT

! introduced in [15]. LMT

! is
aimed to be used for proof search in Propositional Minimal Implica-
tional Logic (M!), in a bottom-up approach. Termination of the cal-
culus is guaranteed by a strategy of rule application that forces an
ordered way to search for proofs such that all possible combinations
are stressed. For an initial formula ↵, proofs in LMT

! has an upper
bound of |↵| · 2|↵|+1+2·log2|↵|, which together with the system strategy
ensure decidability. LMT

! has the property to allow extractability of
counter-models from failed proof searches (bicompleteness), i.e., the at-
tempt proof tree of an expanded branch produces a Kripke model that
falsifies the initial formula.

1 Introduction

Propositional Minimal Implicational Logic (M!) is the fragment of the Propo-
sitional Minimal Logic containing only the logical connective !.

In [15] we present the sequent calculus LMT! aimed to be used for bottom
up proof search in M!. Our main contribution here is a Termination Theorem
for LMT! not covered in the original paper, and a new version of the Com-
pleteness Theorem initially showed there. LMT!is based on a set of rules and
in a general strategy for application of the rules in such a way that we can avoid
the usage of loop checkers and mechanisms for backtracking. LMT! also avoids
the necessity of working with di↵erent systems for provability and refutation,
a very common approach to deal with this problem described in the literature.
Counter-model generation (using Kripke semantics) is achieved as a consequence
of the features of the system and the way the attempt proof tree (produced by
a failed proof search) is constructed during a proof search process. We imple-
mented LMT! as an interactive theorem prover in Lua. Its source code can be
found at https://github.com/jeffsantos/GraphProver.

? The authors thank CNPq and CAPES for supporting this research

2 Minimal Implicational Logic

2.1 Syntax and Semantics for M!

The syntax and semantics of M! is the intuitionistic syntax and semantics but
restricted to ! only. Thus, given a propositional language L, a M! model is
a structure hU,�,Vi, where U is a non-empty set (worlds), � is a partial order
relation on U and V is a function from U into the power set of L, such that if
i, j 2 U and i � j then V(i) ✓ V(j). Given a model, the satisfaction relationship
|= between worlds in models and formulas is defined as in Intuitionistic Logic,
namely:

– hU,�,Vi |=i p, p 2 L, i↵, p 2 V(i)
– hU,�,Vi |=i ↵1 ! ↵2, i↵, for every j 2 U , such that i � j, if hU,�,Vi |=j ↵1

then hU,�,Vi |=j ↵2.

As usual a formula ↵ is valid in a model M, namely M |= ↵, if and only if, it
is satisfiable in every world i of the model, namely 8i 2 U,M |=i ↵. A formula
is a M! tautology, if and only if, it is valid in every model.

2.2 Proof Search and Counter-Model Generation in M!

It is known that Prawitz’s Natural Deduction System for Propositional Mini-
mal Logic with only the !-rules (!-Elim and !-Intro) is sound and complete
for the M! regarding Kripke semantics. As a consequence of this, Gentzen’s
LJ system ([6]) containing only right and left !-rules is also sound and com-
plete. [6] also proved the decision problem for Propositional Intuitionistic Logic
(Int), a case that includes the Propositional Minimal Logic (Min) and M!.
However, Gentzen’s approach was not conceived to be a bottom-up proof search
procedure.

A central aspect when considering mechanisms for proof search in M! (and
also for Int) is the application of the !-left rule. The LK system proposed by
[6], the sequent calculus for Classical Logic, with some adaptations (e.g. [16]) can
ensure that each rule, when applied in a bottom-up manner in the proof search,
reduces the degree (the number of atomic symbols occurrences and connectives
in a formula) of the main formula of the sequent (the formula to which the rule
is applied) implying the termination of the system. However, the case for Int is
more complicated. First, we have the “context-splitting” (using an expression
from [3]) nature of !-left, i.e., the formula on the right side of the conclusion
sequent is lost in the left premise of the rule application. Second, as we can reuse
a hypothesis in di↵erent parts of a proof, the main formula of the conclusion must
be available to be used again by the generated premises. Thus, the !-left rule
has the repetition of the main formula in the premises, a scenario that allows
the occurrence of loops in automatic procedures.

A common way to control the proof search procedure in M! (and in Int)
is by the definition of routines for loop verification as proposed in [17]. Loop

checkers are very expensive procedures, although they are e↵ective to guaran-
tee termination in automatic provers for M! (and other logics with the same
characteristic). The work in [9] and [11] are examples of techniques that can be
used to minimize the performance problems that can arise with the use of such
procedures.

To avoid the use of loop checkers, [2] proposed a terminating contraction-free
sequent calculus for Int, named LJT, using a technique based on the work of
[18] in the 50s. [14] extended this work showing a method to generate counter-
examples in this system. They proposed two calculi, one for proof search and
another for counter-model generation, forming a way to decide about the validity
or not of formulas in Int. A characteristic of their systems is that the subfor-
mula property does not hold on them. In [5], a similar approach is presented
using systems where the subformula property holds. They also proposed a single
decision procedure for Int which guarantee minimal depth counter-model.

Focused sequent calculi appeared initially in the Andreoli’s work on linear
logic ([1]). The author identified a subset of proofs from Gentzen-style sequent
calculus, which are complete and tractable. [13] proposed the focused sequent
calculi LJF where they used a mapping of Int into linear logic and adapted the
Andreoli’s system to work with the image. [4] presented the focused system LJQ
that work direct in Int. Focusing is used in their system as a way to implement
restrictions in the!-left rule as proposed by [18] and [12]. The work of [4] follows
from the calculus with the same name presented in [8].

3 The Sequent Calculus LMT

!

The sequent calculus LMT! was first presented in [15]. Here, we presented
a Termination Theorem for LMT! not covered in the original paper, and a
new version of the Completeness Theorem initially showed there. A sequent in
LMT! has the following general form:

{�0},⌥ p1
1 ,⌥ p2

2 , ...,⌥ pn
n ,�) [p1, p2, ..., pn],' (1)

where ' is a formula in L and �, ⌥ p1
1 ,⌥ p2

2 , ...,⌥ pn
n are bags4 of formulas. Each

⌥ pi
i represents formulas associated with an atomic formula pi.
A sequent has two focus areas, one in the left side (curly bracket)5 and

another on the right (square bracket). Curly brackets are used to control the
application of the !-left rule and square brackets are used to keep control of
formulas that are related to a particular counter-model definition. �0 is a set of
formulas and p1, p2, ..., pn is a sequence that does not allow repetition. We call
context of the sequent a pair (↵, q), where ↵ 2 �0 and ' = q, where q is an
atomic formula on the right side of the sequent.

4 A bag (or a multiset) is a generalization of the concept of a set that, unlike a set,
takes repetitions into account: a bag {A, A, B} is not the same as the bag {A, B}.

5 Note that the symbols { and } here do not represent a set. They are used as an
annotation in the sequent to determine the left side focused area. Therefore, �0

instead is a set of formulas in the focused area.

The axioms and rules of LMT! are presented in Figure 1. In each rule,
�0 ✓ �.

Rules are inspired by their backward application. In a!-left rule application,
the atomic formula, q, on the right side of the conclusion goes to the []-area in
the left premise. � formulas in the conclusion are copied to the left premise and
marked with a label relating each of them with q. The left premise also has a
copy of � formulas without the q-label. This mechanism keeps track of proving
attempts. In a restart rule application, the focused area of the left side of the
conclusion sequent is cleaned on the premise. Also, the atomic formula, q, on the
right side of the conclusion goes to the []-area in the premise and � formulas in
the conclusion are copied to the premise and marked with a label relating each
of them with q. In the premise, the pi is removed from the []-area, becoming
the right formula of the premise and each ⌥

pj

j , for j  i has their correspondent
labels removed.

Axiom:

axiom
{�0, q},⌥ p1

1 ,⌥ p2
2 , . . . ,⌥ pn

n

,�) [p1, p2, . . . , pn], q

Focus:

{�0,↵},⌥ p1
1 ,⌥ p2

2 , . . . ,⌥ pn
n

,�,↵) [p1, p2, . . . , pn],�
f↵

{�0},⌥ p1
1 ,⌥ p2

2 , . . . ,⌥ pn
n

,�,↵) [p1, p2, . . . , pn],�

Restart:

{},⌥1,⌥2, . . . ,⌥i

,⌥
pi+1
i+1 , . . . ,⌥ pn

n

,�q) [p1, p2, . . . , pi+1, . . . , pn, q], pi
rpi

{�0},⌥ p1
1 ,⌥ p2

2 , . . . ,⌥ pi
i

,⌥
pi+1
i+1 , . . . ,⌥ pn

n

,�) [p1, p2, . . . , pi, pi+1, . . . , pn], q

!-Right

{�0},⌥ p1
1 ,⌥ p2

2 , . . . ,⌥ pn
n

,�,↵) [p1, p2, . . . , pn],� !-r↵!�

{�0},⌥ p1
1 ,⌥ p2

2 , . . . ,⌥ pn
n

,�) [p1, p2, . . . , pn],↵ ! �

!-Left

Considering ⌥ =
n[

i=1

⌥ pi
i

and p̄ = p1, p2, . . . , pn, we have:

{↵ ! �,�0},⌥ ,�q,�) [p̄, q],↵ {↵ ! �,�0},⌥ ,�,�) [p̄], q
!-l(↵!�,q)

{↵ ! �,�0}⌥ ,�) [p̄], q

Fig. 1. Rules of LMT

!

3.1 A Proof Search Strategy

The following is a general strategy to be applied with the rules of LMT! to
generate proofs from an input sequent (a sequent that is a candidate to be
the conclusion of a proof), which is based on a bottom-up application of the
rules. From the proposed strategy, we can then state a proposition about the
termination of the proving process.

A goal sequent is a new sequent in the form of (1). It is a premise of one of
the system’s rules, generated by the application of this rule on an open branch
during the proving process. If the goal sequent is an axiom, the branch where it
is will stop. Otherwise, apply the first applicable rule in the following order:

1. Apply !-right rule if it is possible, i.e., if the formula on the right side of
the sequent, outside the []-area, is not atomic. The premise generated by this
application is the new goal of this branch.

2. Choose one formula on the left side of the sequent, not labeled yet, i.e., a
formula ↵ 2 � that is not occurring in �0, then apply the focus rule. The
premise generated by this application is the new goal of this branch.

3. If all formulas on the left side have already been focused, choose a formula
↵ 2 �0 such that the context (↵, q) was not yet tried since the last application
of a restart rule. We say that a context (↵, q) is already tried when a formula
↵ on the left was expanded (by the application of !-left rule) with q as the
formula outside the []-area on the right side of the sequent. The premises
generated by this application are new goals of the respective new branches.

4. Choose the leftmost formula inside the []-area that was not chosen before
in this branch and apply the restart rule. The premise generated by this
application is the new goal of the branch.

Observation 31 From the proof strategy we can make the following observa-
tions about a tree generated during a proving process:

(i) A top sequent is the highest sequent of a branch in the tree.
(ii) In a top sequent of a branch on the form of sequent (1), if ' 2 � then the

top sequent is an axiom and the branch is called a closed branch. Otherwise,
we say that the branch is open and ' is an atomic formula.

(iii) In every sequent of the tree, �0 ✓ �.
(iv) For i = 2, . . . n, ⌥ pi�1

i�1 ✓ ⌥ pi
i , since that in the !-left rule application, that

is when formulas are labeled, we always make a copy of each formula not
labeled on the conclusion so that them become available to the next context
of rule application.

4 A Termination Strategy for LMT

!

In [10], Hirokawa presented an upper bound for the size of normal form Natural
Deduction proofs of implicational formulas in Int (which includes M! formu-
las). The author showed that, for a formula ↵ 2 M!, this limit is |↵| · 2|↵|+1.

Our approach to establishing termination for LMT! proof search is to use
the Hirokawa result to define a correspondent bound to it. To do that, we pro-
posed two translation functions. The first one translates from normal proofs
in Natural Deduction to a cut-free sequent calculus, following an LJ! system,
adapted as discussed in Section 2.2, thus we can establish the limit for proof
search in LJ! too. The second translates from LJ! to LMT!, defining, then,
the upper bound for this system. It is worth to note that this translation process
can also be used to prove the completeness of LMT!.

4.1 Translating Natural Deduction into Sequent Calculus

Figure 2 presents a recursively defined function6 to translate Natural Deduction
normal proofs of M! formulas into LJ! proofs (in a version of the system
without the cut rule).

In this definition, c is a function that returns the conclusion (last sequent) of
a LJ! demonstration as showed in (2). Also, ! �lc is a function that receives
two LJ! sequents and a formula to construct the conclusion of a ! �left rule
application, as defined in (3).

c

✓ Q

�) �

◆
= �) � (2)

! �lc(�) ↵;�,�) �;↵! �) = �,↵! �) � (3)

Theorem 1. The size of proofs in LJ! considering only implicational tautolo-
gies is the same of that in Natural Deduction, i.e. for an implicational formula
↵, a proof in LJ! has maximum height of |↵| · 2|↵|+1.

Proof. This proof follows directly from the translation function aforementioned
as each step in the Natural Deduction proof is translated into exactly one step
in the LJ! resultant proof.

4.2 An Upper Bound for the Proof Search in LMT!

We now propose a translation from LJ! proofs into the system LMT!. The
translation function needs to adapt a sequent in LJ! form to a sequent in
LMT! form. Figure 3 presents the definition of the translation function7.

6 We use a semicolon to separate arguments of functions (in function definitions and
function calls) instead of the most common approach to using commas. This change
in convention aims to avoid confusion with the commas used to separate formulas
and sets of formulas in sequent notation.

7 Here, we also use semicolon to separate function arguments here

Axioms:

F (↵;�) = �,↵) ↵

Case of !Introduction:

F

0

BBBB@

[↵]1

Q

�
!-I1

↵ ! �

;�

1

CCCCA
=

F

0

@
↵
Q

�

; {↵} [�

1

A

! r
�) ↵ ! �

Case of !Elimination:

F

0

BBBBBB@

Q
1

↵ ↵ ! �

�
Q

2

C

;�

1

CCCCCCA
=

F

✓ Q
1

↵
; {↵ ! �} [�

◆
F

0

B@

�
Q

2

C

; {↵ ! �} [�

1

CA

! l

! �lc

0

B@c

✓
F

✓ Q
1

↵
; {↵ ! �} [�

◆◆
; c

0

B@F

0

B@

�
Q

2

C

; {↵ ! �} [�

1

CA

1

CA ;↵ ! �

1

CA

Fig. 2. A recursively defined function to translate Natural Deduction proofs into LJ

!

We use some abbreviations to shorten the function definition of Figure 3. We
present them below.

D0
1 = F 0

✓
D1

�,↵ ! �) ↵
;� [{↵ ! �};⌥ [� q [{(↵ ! �)q};⌃ [{q};⇧ 0

◆

D0
2 = F 0

✓
D2

�,�) q
;� [{↵ ! �};⌥ ;⌃;⇧ 0

◆

⇧ 0 = PROOFUNTIL

✓
FOCUS

✓ {�},⌥,�,↵ ! �) [⌃], q

⇧

◆◆

� q =
means that all formulas of the set � are labeled with a refe-
rence to the atomic formula q.

(↵ ! �)q = means the same for the individual formula ↵ ! �.

Axioms:

F
0 (�,↵) ↵;�;⌥ ;⌃;⇧) =

{�},⌥,�,↵) [⌃],↵
Q

Last rule is !-right:

F
0

0

@
D

�,↵) �
!-r

�) ↵ ! �

;�;⌥ ;⌃;⇧

1

A =

F
0

D
�,↵) �

;�;⌥ ;⌃;
{�},⌥,�) [⌃],↵ ! �

Q

!

! r
{�},⌥,�) [⌃],↵ ! �

⇧

Last rule is !-left:

F
0

0

B@

D1

�,↵ ! �) ↵

D2

�, �) q
!-l

�,↵ ! �) q

;�;⌥ ;⌃;⇧

1

CA =

D0
1 D0

2 ! l

PROOFUNTIL

FOCUS

{�},⌥,�,↵ ! �) [⌃], q

⇧

!!

Fig. 3. A recursive function to translate LJ

! into LMT

!

The complex case occurs when the function F 0 is applied to a proof frag-
ment in which the last LJ! rule applied is an !-left. In this case, F 0 needs to
inspect the proof fragment constructed until that point to identify whether the
context (↵! �, q) was already used or not. This inspection has to be done since
LMT! does not allow two or more applications of the same context between
two applications of the restart rule. To deal with this, we use some auxiliary
functions described below.

FOCUS is a function that receives a fragment of proof in LMT! form and
builds one application of the focus rule on the top of the proof fragment received
in the case that the main formula of the rule is not already focused. The main
formula is also an argument of the function. In the function definition (4), we
have the constraint that ↵ 2 � .

FOCUS

0

B@
{�},⌥,�) [⌃],�

Q

{}) [], �

;↵

1

CA =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

{�,↵},⌥,�) [⌃],�
focus{�},⌥,�) [⌃],�

Q

{}) [], �

if ↵ /2 �

{�},⌥,�) [⌃],�
Q

{}) [], �

otherwise

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

(4)

The function PROOFUNTIL also receives a fragment of an LMT! proof
where (↵ ! �, q) is one of the available contexts, applies the restart rule with
an atomic formula p such that p 2 ⌃ in the top of this fragment of proof and,
then, conducts a sequence of LMT! rule applications following the strategy
aforementioned until the point that the context (↵ ! �, q) is available again.
This mechanism has to be done in the case that the context (↵ ! �, q) is
already applied in an !-left application, some point after the last restart rule
application in the proof fragment received as the argument ⇧. Otherwise, the
proof fragment is returned unaltered. Function PROOFUNTIL is described in
the function definition (5).

PROOFUNTIL

0

B@
{�,↵ ! �},⌥,�) [⌃], q

Q

{}) [], �

1

CA =

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

{�00,↵ ! �},⌥ 00,� 0) [⌃00], q

...
{},⌥ 0,� q,�) [⌃0], p

restart�p
{�,↵ ! �},⌥,�) [⌃], q

Q

{}) [], �

! -left(↵ ! �, q) 2
Q

{�,↵ ! �},⌥,�) [⌃], q
Q

{}) [], �

otherwise

9
>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>;

(5)

4.3 Termination

To control the end of the proof search procedure of LMT! our approach is to
prove an upper bound to the size of its proof search tree. Then, we need to show
that the LMT! strategy here proposed allows exploring all the possible ways
to expand the proof tree until it reaches this size.

From Theorem 1, we know that the upper bound for cut-free proofs based on
LJ! is |↵| · 2|↵|+1, where ↵ is the initial formula that we want to prove. We use
the translation presented in Figure 3 on the previous Section to find a similar
limit for LMT!proofs. We have to analyze three cases to establish an upper
bound for LMT!.

(i) Axioms of LJ! maps one to one with axioms of LMT!;
(ii) !-right applications of LJ! maps one to one with !-right applications of

LMT!;
(iii) !-left applications of LJ! maps to LMT! in three di↵erent possible sub-

cases, according to the context (↵! �, q) in which the rule is being applied
in LJ!. We have to consider the fragment of LMT! already translated
to decide the appropriate case.
– If the context is not yet focused neither expanded, then, one appli-

cation of !-left in LJ! maps to two applications of rules in LMT!:
first, a focus application, then an !-left application.

– If the context is already focused but not yet expanded, then,
one application of !-left in LJ! maps to one application of !-left in
LMT!.

– If the context (↵ ! �, q) is already focused and expanded, then,
one application of!-left in LJ! maps to the height of the LMT! proof
fragment produced by the execution of the PROOFUNTIL function.
Let this height be called h.

Lemma 1. The height h that defines the size of the proof fragment returned by
the function PROOFUNTIL has a maximum limit of 22log2|↵|, where ↵ is the
main formula of the initial sequent of the proof in LMT!.

Proof. Consider a proof
Q

LJ

! of an initial sequent in LJ! with the form) ↵.
The process of translating

Q
LJ

! to LMT! produces a proof
Q

LMT

! with the
initial sequent in the form {}) [],↵. Consider that ↵ has the form ↵1 ! ↵2.
In some point of the translation to LMT!, we reach a point where a context
(! ', q) is already focused and expanded in the already translated part of
the proof

Q
LMT

! . At this point, the function PROOFUNTIL generates a
fragment of the proof

Q
LMT

! , call it ⌃ of size h. The height h is bound by
the number of applications of !-left rules in ⌃. This can be determined by
the multiplication of the degree of the formula ↵1 (that bounds the number of
possible implicational formulas in the left side of a sequent in LMT!) by the
maximum number of atomic formulas (n) inside the []-area in the highest branch
of ⌃ (each pi inside the []-area allows one application of the restart rule). Thus
we can formalize this in the following manner: h = n ⇥ |↵1|) h = |↵| ⇥ |↵|)
h = |↵|2) |↵|2 = 22·log2|↵|) h = 22·log2|↵|.

Theorem 2. The size of a proof for a formula ↵ 2 M! in LMT! has an
upper bound of |↵| · 2|↵|+1+2·log2|↵|.

Proof. Considering the size of proofs for a formula ↵ using LJ!and the Lemma 1,
the proof follows directly.

Theorem 3. LMT! eventually stops.

Proof. To guarantee termination, we use the upper bound presented in Theo-
rem 2 to limit the height of opened branches during the LMT! proof search
process. The strategy presented in Section 4 forces an ordered application of
rules that produces all possible combination of formulas to be expanded in the
right and left sides of generated sequents. In other words, when the upper bound
is reached the proof search had, for sure, stressed all possible expansions until
that point.

5 Soundness

The soundness of LMT! is already proved in [15]. Here, we just present the
main definitions and proposition regarding it.

Definition 1. A sequent {�0},⌥ p1
1 ,⌥ p2

2 , . . . ,⌥ pn
n ,�) [p1, p2, . . . , pn],' is valid,

if and only if, �0,� |= ' or 9i(
i[

k=1

⌥ pk

k) |= pi, for i = 1, . . . n.

Definition 2. We say that a rule is sound, if and only if, in the case of the
premises of the sequent are valid sequents, then its conclusion also is.

Proposition 1. Considering validity of a sequent as defined in Definition 1,
LMT! is sound.

6 Completeness

By Observation 31.ii we know that a top sequent of an open branch in an attempt
proof tree has the general form below, where q is an atomic formula:

{�0},⌥ p1
1 ,⌥ p2

2 , ...,⌥ pn
n ,�) [p1, p2, ..., pn], q

From Definition 1 and considering that �0 ✓ � in any sequent of an attempt
proof tree following our proposed strategy, we can define a invalid sequent as
follows:

Definition 3. A sequent is invalid if and only if � 2 q and 8i(
i[

k=1

⌥ pk

k) 2 pi,

for i = 1, . . . , n.

Our proof of the completeness starts with a definition about atomic formulas
in the left and right side of a top sequent.

Definition 4. We can construct a Kripke counter-model M that satisfies atomic
formulas in the right side of a top sequent and that falsifies the atomic formula
on the left. This construction can be done in the following way:

1. The model M has an initial world w0.
2. By the proof strategy, we can conclude that, in any sequent of the proof tree,

⌥ p1
1 ✓ ⌥ p2

2 ✓ · · · ✓ ⌥ pn
n ✓ �. We create a world in the model M correspond-

ing for each one of these bags of formulas and, using the inclusion relation
between them, we define a respective accessibility relation in the model M
between such worlds. That is, we create worlds w⌥

p1
1
, w⌥

p2
2
, . . . , w⌥pn

n
, w� re-

lated in the following form: w⌥
p1
1

� w⌥
p2
2

� · · · � w⌥pn
n

� w�. As w0

is the first world of M, it precedes w⌥
p1
1
, that is, w0 � w⌥

p1
1

is also in-

cluded in the accessibility relation. If ⌥ pi
i = ⌥

pi+1

i+1 , for i = 1, . . . , n, then
the associated worlds that correspond to those sets have to be collapsed in a
single world w

⌥
pi
i �⌥

pi+1
i+1

. In this case, the previous relation w⌥
pi
i

� w
⌥

pi+1
i+1

is removed from the � relation of the model M and the pairs w
⌥

pi�1
i�1

�
w⌥

pi
i

and w
⌥

pi+1
i+1

� w
⌥

pi+2
i+2

become respectively w
⌥

pi�1
i�1

� w
⌥

pi
i �⌥

pi+1
i+1

and

w
⌥

pi
i �⌥

pi+1
i+1

� w
⌥

pi+2
i+2

.

3. By Definition 3 of an invalid sequent, � 2 q. The world w� will be used
to guarantee this. We set q false in w�, i.e, M 2w� q. We also set every
atomic formula that is in � as true, i.e., 8p, p 2 �,M ✏w� p.

4. By Definition 3 of an invalid sequent, we also need that 8i(
i[

k=1

⌥ pk

k) 2 pi, for

i = 1, . . . n. Thus, for each i, i = 1, . . . , n we set M 2w
⌥

pi
i

pi and 8p, p 2 ⌥ pi
i ,

being p an atomic formula, M ✏w
⌥

pi
i

p. In the case of collapsed worlds, we

keep the satisfaction relation of the previous individual worlds in the collapsed
one.

5. In w0 set every atomic formula inside the []-area (all of them are atomic) as
false. That is, M 2w0 pi, for i = 1, . . . , n. We also set the atomic formula
outside the []-area false in this world: M 2w0 q. Those definitions make w0

consistent with the � relation of M.

The Figure 4 shows the general shape of counter-models following the steps
enumerated above. This procedure to construct counter-model allows us to state
the following lemma:

Lemma 2. Let S be a top sequent of an open branch in an attempt proof tree
generated by the strategy presented in Section 4. Then we can construct a Kripke
model M with a world u where M 2u S, using the aforementioned counter-model
generation procedure.

Proof. We can prove this by induction on the degree of formulas in �. From
Definition 4, items 3 and 4 we know the value of each atomic formula in the worlds
w� and in each world w⌥

pi
i
. The inductive hypothesis is that every formula in

� is true in w�. Thus, as ⌥ p1
1 ✓ ⌥ p2

2 ✓ · · · ✓ ⌥ pn
n ✓ �, every formula in ⌥ pi

i is
true in w⌥

pi
i
, for i = 1, . . . , n.

Thus, we have two cases to consider:

1. The top sequent is in the rightmost branch of the proof tree ([]-area is empty).

w0

2 p1, . . . , pn
2 q

w⌥
p1
1

8p, p 2 ⌥ p1
1 , p atomic, ✏ p

2 p1

...

w⌥pn
n

8p, p 2 ⌥ pn
n

, p atomic, ✏ p
2 p

n

w�

8p, p 2 � , p atomic, ✏ p
2 q

Fig. 4. General schema of counter-models

Let ↵! � be a formula inM! that is in�. We show thatM ✏w� ↵! �. In
this case, by the proof strategy, � ⌘ (�1 ! (�2 ! · · · ! (�m ! p))), where p
is an atomic formula. By Definition 4.3 ✏w� p. As w� has no accessible world
from it (except for itself), ✏w� �. By the proof strategy, �m ! p,�m�1 !
�m ! p, . . . ,�2 ! · · · ! �m�1 ! �m ! p,�1 ! �2 ! · · · ! �m�1 ! �m !
p also are in �. The degree of each of these formulas is less than the degree
of ↵! � and, by the induction hypothesis, all of them are true in w�. Thus
✏w� � and ✏w� ↵! �.
As the []-area is empty, the sets ⌥ pi

i are also empty. The counter-model only
has two words, w0 and w�, following the properties described in Definition 4.

2. The top sequent is in any other branch that is not the rightmost one ([]-area
is not empty).
Let ↵! � be a formula in M! that is in �. We show that M ✏w� ↵! �.
In this case, by the proof strategy, ↵ ⌘ (↵1 ! (↵2 ! · · · ! (↵m ! q))),
where q is the atomic formula in the right side of the sequent, out of the
[]-area. By Definition 4.3 2w� q. By the proof strategy, ↵1,↵2, . . . ,↵m also
are in �. The degree of each of these formulas is less than the degree of
↵ ! � and, by the induction hypothesis, all of them are true in w�. This
ensures 2w� ↵ and ✏w� ↵! �.
Considering now a formula ↵! � fromM! that is in ⌥ pi

i . By Definition 4.2,
↵ ! � also belongs to �. From the last paragraph, we show that, for any
formula ↵ ! � 2 �, 2w� ↵. As 2w� ↵, by the accessibility relation of the
Kripke model, 2w

⌥
pi
i

↵, for each i = 1, . . . , n. Thus, the value of ↵ ! � is

defined in any of these worlds by the value of ↵! � in w�, that we showed
to be true. Thus, ✏w

⌥
pi
i

↵! �.

As stated in Definition 4.2, ⌥ p1
1 ✓ ⌥ p2

2 ✓ · · · ✓ ⌥ pn
n ✓ � and following

the accessibility relation rule of the M! semantic (relations are reflexive and
transitive) we conclude that:

M ✏w0 ⌥
p1
1 ,2w0 p1

✏w0 ⌥
p2
2 ,2w0 p2

...

✏w0 ⌥
pn
n ,2w0 pn

✏w0 �,2w0 q

Definition 5. A rule is said invertible or double-sound i↵ the validity of its
conclusion implies the validity of its premises.

By Definition 5 we know that a counter-model for a top sequent of a proof
tree which can not be expanded anymore can be used to construct a counter-
model to every sequent in the same branch of the tree until the conclusion
(root sequent). For the !-right rule, not just if the premise of the rule has a
counter-model then so does the conclusion, but the same counter-model will do.
[19] called rules with this property preserving counter model. Dyckho↵ (personal
communication, 2015) proposed to call this kind of rules of strongly invertible
rules. For !-left rule, this is the same when one of the premises is valid, but,
considering the case that both premises are not valid, we need to mix the counter-
models of both sides to construct the counter-model for the conclusion of the
rule. This way to produce counter-models is what we call a weakly invertible rule
(since it is well known that linear models are not complete for M!). The third
case in the following Lemma of Invertibility will solve this, proposing a way to
mix counter-models that come from di↵erent branches in the attempt proof tree.

Lemma 3. The rules of LMT!are invertible.

Proof. Here we just show the case of !-left. The other cases are already showed
in [15]:

!-left Considering that one of the premises of !-left is not valid, the con-
clusion also is. We have to evaluate three cases:

1. The right premise is invalid but the left premise is valid. Then there

is a Kripke model M where ↵ ! �,�0,�,� 2 q and 8i(
i[

k=1

⌥ pk

k) 2 pi, for

i = 1, . . . , n from a given world u. Thus, in the conclusion we have:
– By the model M, there have to be a world v, u � v, in the model where
↵! �,�0,�,� are satisfied and where q is not.

– By the model M, for each i, exists a world vi, u � vi, where ✏vi ⌥
pi
i and

2vi pi.
– Thus, the conclusion is invalid too.

2. The left premise is invalid but the right premise is valid. Then there

is a Kripke model M where ↵ ! �,�0,� 2 ↵ and 8i(
i[

k=1

⌥ pk

k) 2 pi, for

i = 1, . . . , n, and �q 2 q from a given world u. Thus, in the conclusion we
have:
– By the model M, there have to be a world v, u � v, in the model where
↵! �,�0,� are satisfied and where ↵ is not.

– By the model M, for each i, exists a world vi, u � vi, where ✏vi ⌥
pi
i and

2vi pi.
– We also know by M that there is a world v�q , u � v�q , where ✏v�q �q

and 2v�q q. We also have that �q = � and that ↵! � 2 �. Therefore,
✏v�q �0 and ✏v�q ↵! �.

– Thus, the conclusion can not be valid.
3. Both left and right premises are invalid. Then there are two models

M1 and M2, from the right and left premises respectively. In M1 there is
a world u1 that makes the right sequent invalid as described in item 1. In
M2 there is a world u2 that makes the sequent of the left premise invalid
as described in item 2. Considering the way Kripke models are constructed
based on Lemma 2, we know that u1 and u2 are root worlds of their respective
counter-models. Thus, converting the two models into one, M3, by mixing
u1 and u2 in the root of M3, called u3, we have that in u3:
– ↵! �,�0,� are satisfied and ↵ is not.
– for i = 1, . . . , n, we have that ✏u3 ⌥

pi
i and 2u3 pi.

– 2u3 q
– Thus, the conclusion is also invalid.

Proposition 2. LMT! is complete regarding the proof strategy presented in
Section 4

Proof. It follows direct from Theorem 3 (LMT! terminates) and Lemma 2 (we
can construct a counter-model for a top sequent in a terminated open branch of
LMT!) and Lemma 3 (the rules of LMT! are invertible).

7 Conclusion and Future Work

We presented here a sequent calculus for proof search forM! called LMT! which
aims to proceed the proof search ofM! formulas in a bottom-up, forward-always
approach. Termination of the proof search is achieved without using loop check-
ers. LMT! does not need an explicit backtracking mechanism to be complete.
LMT! igenerates Kripke counter-models from search trees produced by unsuc-
cess proving processes.

We can enumerate the following issues as future work: (a) Define a pre-
cise upper bound for termination (the upper bound used here for achieving
termination in LMT! is a very high bound, many non-theorems can be iden-
tified in a small number of steps. Our labeling mechanism in conjunction with

the usage of the restart rule produces many repetitions in the proof tree); (b)
compression and sharing (explore the techniques proposed by [7] to define
approaches to shorten the size of proofs); (c) minimal counter-models (use
references such as [2] and in [14] to improve LMT! counter-model generation).

References

1. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal of
Logic and Computation 2(3), 297–347 (1992)

2. Dyckho↵, R.: Contraction-free sequent calculi for intuitionistic logic. The Journal
of Symbolic Logic 57(03), 795–807 (1992)

3. Dyckho↵, R.: Intuitionistic decision procedures since gentzen. In: Advances in Proof
Theory, pp. 245–267. Springer (2016)

4. Dyckho↵, R., Lengrand, S.: LJQ: a strongly focused calculus for intuitionistic logic.
In: Logical Approaches to Computational Barriers, pp. 173–185. Springer (2006)

5. Ferrari, M., Fiorentini, C., Fiorino, G.: Contraction-free linear depth sequent calculi
for intuitionistic propositional logic with the subformula property and minimal
depth counter-models. Journal of automated reasoning 51(2), 129–149 (2013)

6. Gentzen, G.: Untersuchungen über das logische schließen. i. Mathematische
zeitschrift 39(1), 176–210 (1935)

7. Gordeev, L., Haeusler, E.H.: NP vs PSPACE. arXiv preprint arXiv:1609.09562
(2016)

8. Herbelin, H.: A �-calculus structure isomorphic to Gentzen-style sequent calculus
structure. In: Computer Science Logic. pp. 61–75. Springer (1995)

9. Heuerding, A., Seyfried, M., Zimmermann, H.: E�cient loop-check for backward
proof search in some non-classical propositional logics. In: Theorem Proving with
Analytic Tableaux and Related Methods, pp. 210–225. Springer (1996)

10. Hirokawa, S.: Number of proofs for implicational formulas. Introduction to Math-
ematical Analysis (in Japanese) 772, 72–74 (1991)

11. Howe, J.M.: Two loop detection mechanisms: a comparison. In: Automated Rea-
soning with Analytic Tableaux and Related Methods, pp. 188–200. Springer (1997)

12. Hudelmaier, J.: An O(n log n)-space decision procedure for intuitionistic proposi-
tional logic. Journal of Logic and Computation 3(1), 63–75 (1993)

13. Liang, C., Miller, D.: Focusing and polarization in intuitionistic logic. In: Computer
Science Logic. pp. 451–465. Springer (2007)

14. Pinto, L., Dyckho↵, R.: Loop-free construction of counter-models for intuitionis-
tic propositional logic. In: Symposia Gaussiana, Conf A. pp. 225–232. Walter de
Gruyter & Co (Berlin) (1995)

15. Santos, J.d.B., Vieira, B.L., Haeusler, E.H.: A unified procedure for provability
and counter-model generation in minimal implicational logic. Electronic Notes in
Theoretical Computer Science 324, 165–179 (2016)

16. Seldin, J.P.: Manipulating proofs (1998)
17. Underwood, J.: A constructive completeness proof for intuitionistic propositional

calculus. Tech. rep., Cornell University (1990)
18. Vorobev, N.N.: A new algorithm for derivability in the constructive propositional

calculus. American Mathematical Society Translations 94(2), 37–71 (1970)
19. Weich, K.: Decision procedures for intuitionistic propositional logic by program ex-

traction. In: Automated Reasoning with Analytic Tableaux and Related Methods,
pp. 292–306. Springer (1998)

LSFA 2017

Algebraic semantics for Nelson’s logic S

Thiago N. Silva

1
Umberto Rivieccio

2

Departamento de Informática e Matemática Aplicada

Universidade Federal do Rio Grande do Norte

Natal, Brazil

Abstract

Besides the better-known Nelson’s logic and paraconsistent Nelson’s logic, in Negation and separation

of concepts in constructive systems (1959), David Nelson introduced a logic called S with motivations of
arithmetic and constructibility. S was defined by means of a calculus (crucially lacking the contraction rule)
having infinitely many rule schemata, and no semantics was provided. We look here at the propositional
fragment of S, showing that it is algebraizable (in fact, implicative) with respect to a class of involutive
residuated lattices. We thus introduce the first (algebraic) semantics for S as well as a finite Hilbert-style
calculus equivalent to Nelson’s presentation.

Keywords: Nelson’s Logic; Algebraic Logic; Strong negation; Constructive logic; Involutive residuated
lattice.

1 Nelson’s logic S

In this section we give Nelson’s original presentation of the propositional fragment
of S [4].

Nelson’s logic S = hFm,`Si is the sentential logic in the language h^,_,!,¬,?i
defined by the Hilbert-style calculus with the following axiom and rule schemata:

Axioms

(A1) '! '

(A2) ? ! '

(A3) ¬'! ('! ?)

(A4) ¬?
(A5) ('!) $ (¬ ! ¬').

As usual, '$ abbreviates ('!) ^ (! ').

1 Email: thiagnascsilva@gmail.com
2 Email: urivieccio@dimap.ufrn.br

This paper is electronically published in

Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Silva, Rivieccio

Table 1
Rules

�) (') () �))

�) () (') �))
(P)

') (') (') �))

') (') �)
(C)

�) ' ') �

�) �

(E)

�) ') �

�) (('))) �)
() l) �

') �

() r)
') �

(' ^)) �

(^l1)

) �

(' ^)) �

(^l2) �) ' �)

�) (' ^) (^r) ') �) �

(' _)) �

(_l1)

(')2
�) ()2

�)

((' _))2
�)

(_l2) �)

�) (_ �) (_r1) �) �

�) (_ �) (_r2)

(' ^ ¬)) �

¬('))) �

(¬) l)
�)2 (' ^ ¬)
�)2 ¬('))

(¬) r)
(¬' _ ¬)) �

¬(' ^)) �

(¬ ^ l)

�) (¬' _ ¬)
�) ¬(' ^) (¬ ^ r)

(¬' ^ ¬)) �

¬(' _)) �

(¬ _ l)
�) (¬' ^ ¬)
�) ¬(' _) (¬ _ r)

') �

¬¬') �

(¬¬l)
�) '

�) ¬¬' (¬¬r)

Rules

Following Nelson’s notation, in the Table 1 � = {'1, . . . ,'n} is a finite set of
formulas and the following abbreviations are used. � ! ' := '1 ! ('2 ! (. . . !
('n ! '))) and, if � = ;, then � ! ' := '. ' !2

 := ' ! (' !) and
� !2

' := '1 !2 ('2 !2
. . . (!2 ('n !2

'))). Notice that we have fixed obvious
typos in the rules (^l), (^r) and (¬ ! l) as they appear in [4, p. 214-5]. The rule
(C) above, called weak condensation by Nelson, replaces (and is indeed a weaker
form of) the usual contraction rule:

'! ('!)

'!

2 S is algebraizable

In this section we prove that S is algebraizable in the sense of Blok and Pigozzi (and,
in fact, it is implicative [1, Definition 2.3]), and we give two equivalent presentations
for its equivalent algebraic semantics (called S-algebras). The first one is obtained
via the algorithm of [6, Theorem 2.17], while the second one is closer to the usual
axiomatizations of classes of residuated lattices, which are the algebraic counterpart
of many logics in the substructural family. The second presentation of S-algebras

2

Silva, Rivieccio

will allow us to see at a glance that they form an equational class, and also makes it
easier to compare them with other known classes of algebras of substructural logics.

Definition 2.1 An implicative logic is a logic L in a language L with a binary term
! such that the following conditions are satisfied:

IL1 `L '! '

IL2 '! , ! � `L '! �

IL3 For each � 2 L, of arity n > 0,
Sn

i=1{'i ! i, i ! 'i} `L �'i · · ·'n !
� i · · · n

IL4 ','! `L

IL5 ' `L ! '

Let Fm be a set of formulas, henceforth the set the equations of the language L

is denoted by Eq and is defined as Eq := Fm ⇥ Fm, we write ' ⇡ rather than
(',).

Theorem 2.2 The calculus `S is implicative, and thus algebraizable, with transla-

tions ⌧ :Fm ! Eq from formulas to equations and ⇢:Eq ! Fm from equations to

formulas given by ⌧(') := ' ⇡ ('! ') and ⇢(' ⇡) := {('!) ^ (! ')}.

2.1 S-algebras

By Blok-Pigozzi’s algorithm ([6, Theorem 2.17], see also [1, Proposition 3.44]), we
have that the equivalent algebraic semantics of S is a class of algebras given by
Definition 2.3 below.

Definition 2.3 An S-algebra is a structure A = hA,^,_,!,¬, 0i of type
h2, 2, 2, 1, 0i that satisfies the following equations and quasiequations:

(i) The equation E(') for any axiom ' of the calculus `S , defined as follows:

E(') := ' ⇡ ¬0.

(ii) The quasiequation Q(R) for any rule R = {'1, . . . ,'n,'} of the calculus `S
(with premisses '1, . . . ,'n and conclusion '), defined as follows:

Q(R) := ('1 ⇡ ¬0 & . . . & 'n ⇡ ¬0)) ' ⇡ ¬0.

We denote by E(An) the equation that is the ⌧ -translation of axiom An (for
1  n  5), and by Q(R) the quasiequation that is the ⌧ -translation of the rule R.
From now on we shall also abbreviate x ⇤ y := ¬(x ! ¬y), 1 := ¬0, x2 := x ⇤ x and
x

n := x ⇤ (xn�1) for n > 2.

Proposition 2.4 Let A be an S-algebra and a, b, c 2 A. Then,

(i) a ! a = b ! b = 1.

(ii) The relation  defined by a  b i↵ a ! b = 1, is a partial order with maximum

1 and minimum 0.

(iii) a ! b = ¬b ! ¬a.

3

Silva, Rivieccio

(iv) a ! (b ! c) = b ! (a ! c).

(v) ¬¬a = a and a ! 0 = ¬a.
(vi) hA, ⇤, 1i is a commutative monoid.

(vii) (a ⇤ b) ! c = a ! (b ! c).

(viii) The pair h⇤,!i is residuated, i.e., a ⇤ b  c i↵ b  a ! c.

(ix) a

2  a

3
.

(x) hA,^,_i is a lattice with order .

(xi) (a _ b)2  a

2 _ b

2
.

Proof. (i). Follows from the fact that S is implicative.
(ii). By E(A2) we have that 0 is the minimum element with respect to the order .
The rest easily follows from the fact that S is implicative.
(iii). Follows from E(A5) and item (ii) above.
(iv). By Q(P) and (ii) above, we have that d  a ! (b ! c) implies d  b ! (a ! c)
for all d 2 A. Then, taking d = a ! (b ! c), we have a ! (b ! c)  b ! (a ! c)
which easily implies the desired result.
(v). ¬¬a = a follows from item (ii) above together with Q(¬¬l) and Q(¬¬r).
By item (iii) above, a ! 0 = ¬0 ! ¬a = 1 ! ¬a = ¬a. The last equality
holds because, on the one hand, by Q(! l) we have that 1 = 1 and ¬a  ¬a
implies 1 ! ¬a  ¬a. On the other, by item (i) we have ¬a ! ¬a = 1 and
so we can apply Q(! r) to obtain 1 ! (¬a ! ¬a) = 1. By item (iv), we have
1 ! (¬a ! ¬a) = ¬a ! (1 ! ¬a), hence we conclude that ¬a ! (1 ! ¬a) = 1
and so, by item (ii), ¬a  1 ! ¬a.
(vi). For commutativity, using item (iii) and (v) above, we have a ⇤ b = ¬(a !
¬b) = ¬(¬¬b ! ¬a) = ¬(b ! ¬a) = b ⇤ a. For associativity, using (iii), (v), Q(¬¬r)
and Q(¬¬l), we have (a ⇤ b) ⇤ c = ¬(¬(a ! ¬b) ! ¬c)) = ¬(¬¬c ! ¬¬(a ! ¬b)) =
¬(c ! (a ! ¬b)) = ¬(a ! (c ! ¬b)) = ¬(a ! (b ! ¬c)) = ¬(a ! ¬¬(b !
¬c)) = a ⇤ (b ⇤ c). As to 1 being the neutral element, using item (v) above, we have
a ⇤ 1 = a ⇤ ¬0 = ¬(a ! ¬¬0) = ¬(a ! 0) = ¬¬a = a.
(vii). Using items (ii), (iii), (v) and (vi) above, we have (a ⇤ b) ! c = ¬(a ! ¬b) !
c = ¬c ! ¬¬(a ! ¬b) = ¬c ! (a ! ¬b) = a ! (¬c ! ¬b) = a ! (¬¬b ! ¬¬c) =
a ! (b ! c).
(viii). By item (ii) above, we have a ⇤ b  c i↵ (a ⇤ b) ! c = 1 i↵, by item (vii),
a ! (b ! c) = 1 i↵, by (vi), b ! (a ! c) = 1 i↵, by (ii) again, b  a ! c.
(ix). By Q(C) we have that a3  c implies a2  c for all c 2 A. Then, taking c = a

3,
we have a

2  a

3.
(x). We check that a^ b is the infimum of {a, b} with respect to . Firstly, we have
a ^ b  a and a ^ b  b by Q(^l1), Q(^l2) and item (ii) above. Then, assuming
c  a and c  b, we have c  a ^ b by Q(^r). A similar reasoning, using Q(_r1),
Q(_r2) and Q(_l1), shows that a _ b is the supremum of {a, b}.
(xi). By (x) we have that a

2  a

2 _ b

2 and b

2  a

2 _ b

2. Hence, by item (viii),
we have a  a ! (a2 _ b

2) and b  b ! (a2 _ b

2). By item (ii) we have then
a ! (a ! (a2 _ b

2) = b ! (b ! (a2 _ b

2) = 1, hence we can use Q(_l2) to obtain
(a_ b) ! ((a_ b) ! (a2_ b

2) = 1. Then item (ii) and (viii) give us (a_ b)2  a

2_ b

2

as required. 2

4

Silva, Rivieccio

In the next section we introduce an equivalent presentation of S-algebras which
takes precisely the properties of Proposition 2.4 above as postulates.

2.2 Alternative presentation of S-algebras

We start by recalling the following standard definition [3, p. 185].

Definition 2.5 A bounded integral residuated lattice is an algebra A =
hA,^,_, ⇤,!, 0, 1i of type h2, 2, 2, 2, 0, 0i such that:

(i) hA,^,_, 0, 1i is a bounded lattice with ordering , minimum element 0 and
maximum 1.

(ii) hA, ⇤, 1i is a commutative monoid.

(iii) h⇤,!i form a residuated pair: a ⇤ b  c i↵ a  b ! c for all a, b, c 2 A.

Letting ¬x := x) 0, we say that a residuated lattice is involutive [3, p. 186]
when ¬¬a = a and a ! b = ¬b ! ¬a.

Definition 2.6 An S 0-algebra is a bounded involutive commutative integral resid-
uated lattice that additionally satisfies the equations:

(i) x

2  x

3

(ii) (x _ y)2  x

2 _ y

2.

Since all involutive residuated lattices form an equational class [3, Theorem 2.7],
it is obvious that S 0-algebras are also an equational class. By Proposition 2.4, we
immediately have the following:

Proposition 2.7 Every S-algebra is an S 0
-algebra.

For the converse inclusion, one needs to check that S 0-algebras satisfies all
(quasi)equations introduced in Definition 2.3.

Proposition 2.8 Every S 0
-algebra is an S-algebra.

Besides what we said earlier, an advantage of the presentation given in Defini-
tion 2.6 is that it makes it straightforward to check that, for instance, the three-
element MV-algebra [5] is a model of Nelson’s logic S. This in turn allows one to
prove that the formulas which Nelson claims not to be derivable in S [4, p. 213] are
actually not valid.

3 A finite Hilbert-style calculus for S
In this section we introduce a finite Hilbert-style calculus (which is an extension
of the Full Lambek logic with exchange rule FLe of [3]) that is algebraizable with
respect to the class of S 0-algebras. We will thus indirectly obtain an equivalence
between our calculus and Nelson’s.

The logic S 0 = hFm,`S0i is the sentential logic in the language h^,_,!, ⇤,¬,?i
defined by the Hilbert-style calculus with the following axiom schemata and modus
ponens (from ' and '! , infer) as the only rule:

(i) '! '

5

Silva, Rivieccio

(ii) ('!) ! ((� ! ') ! (� !))

(iii) ('! (! �)) ! (! ('! �))

(iv) (' ⇤) ! (' ^)
(v) (' ^) ! '

(vi) (' ^) !

(vii) (('!) ^ ('! �)) ! ('! (^ �))
(viii) '! (' _)
(ix) ! (' _)
(x) (('!) ^ (� !)) ! ((' _ �) !)

(xi) '! (! (⇤ '))
(xii) ('! (! �)) ! ((⇤ �) ! �)

(xiii) ? ! '

(xiv) '! (! ')

(xv) '2 ! '

3

(xvi) (' _)2 ! '

2 _ 2

(xvii) (¬'! ¬) $ (! ')

(xviii) ¬¬'$ '.

As before, ' $ abbreviates (' !) ^ (! '), while the connective ⇤ is here
taken as primitive.

Axioms 1–12 of our calculus are essentially those of FLe as presented in [3,
Figure 2.9] (with some simplifications due to the fact that we also have weakening,
corresponding to integrality of the algebras), which is algebraizable with respect
to the class of commutative residuated lattices [3, Theorem 2.27]. Algebraizability
is preserved by axiomatic extensions, and since we have expanded FLe only with
a new constant ?, checking that algebraizability is preserved by our expansion is
trivial [1, p. 71]. Putting these considerations together we can state the following
results.

Theorem 3.1 The calculus S 0
is algebraizable (with the same translations as S)

with respect to the class of S 0
-algebras.

Corollary 3.2 S and S 0
define the same logic.

As mentioned in the abstract, Nelson introduced two other better-known logics,
which are also algebraizable with respect to classes of residuated structures (N3-
lattices and N4-lattices). The question then arises of what is precisely the relation
between S and these other logics, or (equivalently) between S-algebras and N3
and N4-lattices. Looking at the algebras, one immediately sees that N4 6✓ S and
N3 6✓ S, both are distributive with respect to {^,_}, while S is not. Can be proved
that N3-algebras satisfies the definition 2.6, thus S ✓ N3. Now, in S-algebras the
term '! ' is an algebraic constant, in N4 is not, like this S 6✓ N4.

6

Silva, Rivieccio

References

[1] J. Font, “Abstract Algebraic Logic. An Introductory Textbook”, Studies in Logic, College Publications,
60 (2016).

[2] N. Galatos and J. G. Raftery, Adding involution to residuated structures, Studia Logica, 77(2):181-207,
(2004).

[3] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono, “Residuated Lattices: an algebraic glimpse at
substructural logics”, Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam,
151 (2007).

[4] N. Nelson, “Negation and separation of concepts in constructive systems, in “Constructivity in
Mathematics. Proceedings of the colloquium held at Amsterdam, 39, ed. Arend Heyting, 208-225,
North-Holland, (1959).

[5] R. Cignoli, I. M. L. D’Ottaviano, and D. Mundici, “Algebraic foundations of many-valued reasoning”,
Trends in Logic 7, Studia Logica Library. Kluwer Academic Publishers, Dordrecht, 2000.

[6] W. J. Blok and D. Pigozzi, “Algebraizable logics”, Mem. Amer. Math. Soc. A.M.S., Providence, Jan.
396 (1989).

7

Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Rewriting Logic from a ⇢Log Point of View

Mauricio Ayala-Rincón

Department of Computer Science
University of Brasilia, Brazil

Besik Dundua

Ilia Vekua Institute of Applied Mathematics
Ivane Javakhishvili Tbilisi State University, Georgia

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria

Mircea Marin

Department of Computer Science
West University of Timişoara, Romania

Abstract

Rewriting logic is a well-known logic that emerged as an adequate logical and semantic framework for the
specification of languages and systems. ⇢Log is a calculus for rule-based programming with labeled rules.
Its expressive power stems from the usage of a fragment of higher-order logic (e.g., sequence variables,
and function variables) to express atomic formulas. Its adequacy as a computational model for rule-based
programming is derived from theoretical results concerning E-unification and E-matching in the fragment
of logic adopted by ⇢Log.
In this paper we choose a fragment of the ⇢Log calculus and argue that it can be used to perform deduction
in rewriting logic. More precisely, we define a mapping between the entailment systems of rewriting logic
and ⇢Log for which the conservativity theorem holds. It implies that, like rewriting logic, ⇢Log also can be
used as a logical and semantic framework.

1 Introduction

Rewriting logic [19] emerged as a simple computational logic based on the use of
rewrite theories to represent with great generality (1) various models of computation
(concurrency, programming languages, etc.), and (2) logical deduction. For compu-
tation, it represents states by equivalence classes in an equational theory, and local
concurrent transitions by rewrite rules. For deductive purposes, it can represent
formula-based data structures (e.g., sequents or sets of formulas) by terms, and the
inference rules of the logic by conditional rewrite rules. The rewrite theories, which

c�2017 Published by Elsevier Science B. V.

M. Ayala-Rinc

´

on, B. Dundua, T. Kutsia, M. Marin

are at the core of this logic, provide an adequate representation for a wide variety of
applications, including automated deduction, software and hardware specification
and verification, security, real-time and cyber-space systems, probabilistic systems,
bioinformatics, and chemical systems. (See [19] for a convincing account.) Rewrit-
ing logic is the theoretical basis of Maude [3], a powerful reflective language with
wide range of applications.

In [15], the authors described rewriting logic as a logical and semantic framework.
They showed that it has a flexibility to represent in a natural way many other logics,
maintaining the direct correspondence between proofs in object logics and proofs in
rewriting logic (as the framework logic). This correspondence is often conservative,
given by means of maps of logics, so that an implementation of the object logic is
directly supported by an implementation of rewriting logic. Besides, the authors
explored similarities of rewriting logic with Milner’s CCS, concurrent object-oriented
programming, and structural operational semantics.

An interesting refinement of rewriting logic, inspired by the use of rewriting logic
as a logical framework for deduction, was to make a clear separation of concerns

between the specification of the inference system and the heuristics which guide the
way in which rules are applied. This point of view introduced the usage of strategy
languages to define theory transformations parameterized by strategy modules [16].

⇢Log [13,14] is a system for rule-based programming with labeled rules based
on a calculus which makes all the ingredients of rewriting logic explicit. Terms,
conditional rewrite rules, and strategies that specify the heuristics which guide the
way in which rules are applied, can all be explicitly represented in its syntax. A
novelty of ⇢Log is its definition in a fragment of logic with sequence variables, func-
tion variables, context variables, and membership constraints for their bindings in
the rewrite process. These capabilities make the rule-based specifications of ⇢Log
natural and concise. The calculus served as the basis for a strategy-based program-
ming tool [12,7] and has found applications in constraint logic programming [5],
XML transformation and Web reasoning [4], modeling rewriting strategies [6], in
extraction of frequent patterns from data mining workflows [20], and for automatic
derivation of multiscale models of arrays of micro- and nanosystems [2].

In this paper we choose a fragment of the ⇢Log calculus and argue that it
can be used to perform deduction in rewriting logic. More precisely, we define a
mapping between the entailment systems of rewriting logic and ⇢Log for which the
conservativity theorem holds. It implies that, like rewriting logic, ⇢Log also can be
used as a logical and semantic framework.

The paper is organized as follows: In Section 2 we review syntax and semantics
of rewriting logic. ⇢Log is introduced in Section 3. Section 4 is the main part of the
paper, where the mapping between the entailment systems of these two formalisms
is defined. Section 5 concludes.

2 Syntax and Inference System of Rewriting Logic

In this section, we mainly follow the description of rewriting logic as it is given
in [18]. The syntax of rewriting logic is given by signatures, which are pairs F,E

of a set of ranked function symbols F and a set of equations E. Given a countable

2

M. Ayala-Rinc

´

on, B. Dundua, T. Kutsia, M. Marin

set of variables V, terms over F and V are defined in the usual way:

t :: x f t1, . . . , tn ,

where x V and f F is n-ary. The set of terms over F and V is denoted by
T F,V . The letters t, r, s and u are used to denote its elements, while x, y, z stand
for variables.

The equivalence class of a term t modulo E is denoted by t

E

. The subscript E
is usually omitted, when it causes no confusion. The set of E-equivalence classes of
terms from T F,V is denoted by T

E

F,V .

Given a signature F,E , the considered sentences are sequents t r .

A substitution � is a mapping from variables to terms such that all but finitely
many variables are mapped to themselves. Each substitution � is represented as a
finite set of pairs x1 � x1 , . . . , x

n

� x

n

where the x’s are all the variables
for which � x

i

x

i

.

A rewrite theory R is a 4-tuple R : F,E, L,R , where F and E are sets of
function symbols, L is a set of labels, and R is a set of conditional rewrite rules.
The latter are defined as pairs of a label and a nonempty sequence of pairs of
E-equivalence classes of terms from T F,V . Usually, a rewrite rule of the form
l, t0 , r0 t1 , r1 t

n

, r

n

is written as

l : t0 r0 if t1 r1 t

n

r

n

,

where t1 r1 . . . t

n

t

n

is called the condition of the rule.

A rewrite theory R entails a sequent t r , written R t r , i↵
t r can be proved by finite application of the following four inference rules:

Reflexivity: For each t T
E

F,V ,

t t

.

Congruence: For each t1, . . . , tn, r1, . . . , rn T
E

F,V and f F with the arity
n 1,

t1 r1 t

n

r

n

f t1, . . . , tn f r1, . . . , rn
.

Replacement: For each rule l : t0 r0 if t1 r1 t

n

r

n

R

and for each terms s1, . . . , s
k

, u1, . . . , u
k

T
E

F,V .

s1 u1 s

k

u

k

t1� r1� t

n

� r

n

�

t0� r0#
,

where the set of variables occurring in the rule is x1, . . . , x
k

, and the substi-
tutions are � x1 s1, . . . , x

k

s

k

and # x1 u1, . . . , x
k

u

k

.

Transitivity: For each t , r , s T
E

F,V :

t s s r

t r

.

3

M. Ayala-Rinc

´

on, B. Dundua, T. Kutsia, M. Marin

The entailment relation R t r is defined to model the concurrent
rewriting of t to r , using the rewrite rules of R. When t is used to specify
the rules of change in a concurrent system, an entailed sequent t r has the
intended reading “ t becomes r .” Concurrent rewriting, as it was shown in [18],
actually coincides with deduction in rewriting logic.

The version of rewriting logic described above does not contain sorts for simplic-
ity. What we are interested in this paper, however, is rewriting logic with ordered
sorts. The notions defined above are easily transferred to the order-sorted case, pro-
vided that the signature satisfies a simple technical property called pre-regularity,
which guarantees the existence of the least sort for each term. We briefly recall the
main notions of ordered signatures and theories here, slightly adjusting them to our
terminology. For details one can see, e.g., [8].

In order-sorted setting, in the role of F we have an alphabet, a triple B, , S ,
where B is called the set of basic sorts, S is a B B-sorted set of sets of function
symbols F

w,b

w B , b B , B is partially ordered by the ordering , and the
function symbols satisfy the following monotonicity condition:

f F

w1,b1 F

w2,b2 and w1 w2 imply b1 b2.

When f F

w,b

, we say that w is the arity of f and b is the result sort of f.
When w is the empty word, then f is called a constant. The monotonicity condition
excludes overloaded constants.

We assume that the set of variables is also sorted, which means that V V

b

b B is a family of disjoint sets V

b

of variables for each b B. The set of order-
sorted terms of sort b B over F B, , S , denoted T

b

F,V , is defined as the
least set satisfying the following properties:

V

b

T
b

F,V .

Let � be the empty word of sorts. Then F

�,b

T
b

F,V .

T
b

F,V T
b

F,V if b b.

If f F

w,b

where w b1 b

n

� and t

i

T
bi F,V for all 1 i n, then

f t1, . . . , tn T
b

F,V .

The terms defined in this way might have di↵erent, even incomparable sorts. It
has some unpleasant consequences (e.g., the generated term algebra is not initial,
see [8]). However, with the above mentioned property of pre-regularity this problem
disappears. The alphabet B, , S is called pre-regular i↵ the following property
is satisfied: Let w0 B . Then for any w1 B with w0 w1 and f F

w1,b1 , there
is a least sort b B such that w0 w1 and f F

w,b

for some w B . Goguen and
Meseguer in [8] proved that any term built over a pre-regular alphabet has the least
sort. Sides of equalities are assumed to belong to a set of terms of the same sort.

We write f : w b if f F

w,b

.

Example 2.1 Let R F,E, L,R be an order-sorted rewrite theory with two basic
sorts Nat and Tree, ordered as Nat Tree. The signature F contains sorted function
symbols 0 : � Nat, : Nat Nat Nat, suc : Nat Nat, rev : Tree Tree, and
: Tree Tree Tree. The set of equations E contains the commutativity axiom for
, In L there are the labels l1, l2, l3, l4, and the set R consists of the following four

4

M. Ayala-Rinc

´

on, B. Dundua, T. Kutsia, M. Marin

rules:

l1 : x 0 x .

l2 : suc x suc y suc suc x y .

l3 : rev x x .

l4 : rev x y rev y rev x .

3 The ⇢Log Calculus

In this section we describe a fragment of ⇢Log calculus [13] that is relevant for our
goal: to express the deduction system of rewriting logic.

The ⇢Log signature F consists of unranked function symbols. The symbols
f, g, h, a, b, and c are used to denote them. The countably infinite set of variables
V is split into three disjoint subsets: individual variables VInd, whose elements are
denoted by letters x, y, z; sequence variables VSeq, denoted by x, y, z; and function
variables VFun, usually written as X,Y, Z. As usual, it is assumed that F V .

Definition 3.1 The set of terms over F and V, denoted by T F ,V , and the set
of term sequences over F and V, denoted by S F ,V , are the least sets satisfying
the properties:

VInd T F ,V .

✏ S F ,V , where ✏ denotes the empty sequence of terms and sequence vari-
ables.

s1, . . . , sn S F ,V , 1 n 1, if s
i

T F ,V VSeq for each 1 i n.

f s1, . . . , sn T F ,V , if s1, . . . , sn S F ,V .

X s1, . . . , sn T F ,V , if s1, . . . , sn S F ,V .

Note that T F ,V S F ,V . In other words, we do not distinguish between a
term and a singleton term sequence. Terms of the form a ✏ are abbreviated with
a. For readability, we may write sequences within parentheses, usually when there
is more than one element in the sequence.

We denote terms by t, r, terms or sequence variables by s, u, and sequences (of
terms or sequence variables) by s̃, ũ.

If s̃ s1, . . . , sn and ũ u1, . . . , um , n,m 0, we slightly overload the
comma, writing s̃, ũ for the sequence s1, . . . , sn, u1, . . . , um . Obviously, when
n 0, i.e., when s̃ ✏, then s̃, ũ ũ. Similarly, for ũ ✏ we have s̃, ũ s̃.

The set of variables of a sequence s̃ is denoted by var s̃ . We call s̃ ground if
var s̃ . These notions extend to sets of term sequences, etc.

3.1 Substitutions and Matching Problems

A substitution � is a mapping � : V S F ,V F VFun such that the following
properties are satisfied:

1 Note that s1, . . . , sn S F ,V means that the sequence s1, . . . , sn of terms and sequence variables belongs
to S F ,V . It should not be read as s1 S F ,V , . . . , sn S F ,V .

5

M. Ayala-Rinc

´

on, B. Dundua, T. Kutsia, M. Marin

for all x VInd, � x T F ,V ,

for all x VSeq, � x S F ,V ,

for all X VFun, � X F VFun, and

all but finitely many variables are mapped to themselves.

Substitutions are denoted by lowercase Greek letters �, #, and ", where " stands
for the identity substitution. A substitution � can apply to a term t or a sequence
s̃ and result in the instances (under �): t� of t and s̃� of s̃. They are defined as
x� � x , f s̃ � f s̃� , X s̃ � � X s̃� , x� � x and s1, . . . , sn �

s1�, . . . , sn� . For instance, if � x g a , y , y ✏, z a,X f , then
x,X x, z , b, y, z � g a , y, f g a , y, a , b, a .

The notion of substitution composition is defined in the standard way. (See,
e.g., [1].) We use juxtaposition �# for composition of � with #

Matching with sequence variables is finitary, see, e.g., [9,10]. For instance, if
t f x, b, y and r f b, f a, c , b , then the complete set of matchers of t

to r consists of the following two solutions: �1 x ✏, y f a, c , b and
�2 x b, f a, c , y ✏ . If f is orderless (a generalization of commutativity
for unranked function symbols), then we have more solutions: �3 x ✏, y

b, f a, c , �4 x f a, c , b , y ✏ , �5 x b, y f a, c , and �6

x f a, c , y b . These six substitutions form the complete set of matchers
modulo the orderless theory for f .

3.2 Definite Fragment of ⇢Log

⇢Log atoms are triples s, t̃, r̃ , usually written as a labeled rule s :: t̃ r̃, where s

is called a strategy term, and t̃ and r̃ are term sequences. The intuition is that s

denotes a transformation of t̃ into r̃.

In this paper we consider only definite ⇢Log programs (no negative literals in-
volved) that are sets of nonnegative Horn clauses, constructed from ⇢Log atoms.
The clauses are written as usual, e.g., s0 :: t̃0 r̃0 if s1 :: t̃1 r̃1, . . . , sn :: t̃

n

r̃

n

,
n 0. Goals are conjunctions of atoms, e.g., s1 :: t̃1 r̃1, . . . , sn :: t̃

n

r̃

n

. We
often use the term rule when we refer to a ⇢Log clause. We also say that a clause
defines the strategy in its head (i.e., the clause above defines the strategy s0).

The inference system of our fragment of ⇢Log consists of two rules: one is
resolution, and the other one is for the special strategy id (which, intuitively, denotes
the identity transformation of a sequence to itself). Given a program P and a set
of equations E, these rules are defined as follows (they should be read bottom up:
To prove the query in the lower part, prove the query in the upper part.)

Resolution:

s1 :: t̃1 r̃1, . . . , sn :: t̃
n

r̃

n

, id :: r̃0 ũ, Q �

s :: t̃ ũ, Q,

where s0 :: t̃0 r̃0 if s1 :: t̃1 r̃1, . . . , sn :: t̃
n

r̃

n

is a clause from P, s id,
and s0� E

s, t̃0� E

t̃.

6

M. Ayala-Rinc

´

on, B. Dundua, T. Kutsia, M. Marin

Identity:

Q�

id :: t̃ ũ, Q,

where ũ�

E

t̃.

Here we look at these inference rules as logical deduction rules.

There are some predefined ⇢Log strategies with fixed meaning, which are useful
in the next section for the mapping from Rewriting Logic to ⇢Log:

If s is a strategy term, then the strategy map s :: t1, . . . , tn r1, . . . , rn

succeeds i↵ each strategy s :: t
i

r

i

, 1 i n, succeeds.

If s1, . . . , sn are strategy terms, then the strategy choice s1, . . . , sn :: t̃ r̃

succeeds i↵ at least one of the strategies s
i

:: t̃ r̃, 1 i n succeeds.

Note that map, when realized as an extra inference rule for ⇢Log, can be used
to perform transformations in parallel. It can also be specified within ⇢Log as a
clause, doing transformations sequentially. Such an “internalization” of map is, in
fact, pretty simple:

map z :: ✏ ✏.

map z :: x, x y, y if z :: x y, map z :: x y.

Similarly, it is also rather straightforward to specify the choice strategy as ⇢Log
clauses:

choice z, z :: x y if z :: x y.

choice z, z :: x y if choice z :: x y.

The semantics of ⇢Log can be defined in the same way as it is done in logic
programming, see, e.g., [11].

4 From Rewriting Logic to ⇢Log: Mapping Entailment

Systems

The goal of this section is to illustrate that, via an appropriate mapping, deduction
in rewriting logic can be modeled by deduction in ⇢Log. In other words, our goal is
to define a mapping between what is called entailment systems [17] of rewriting logic
and ⇢Log. By an entailment system of a logic one understands a triple consisting of
the signature, set of sentences, and the entailment relation that satisfies certain
properties (reflexivity, monotonicity, transitivity, and -translation). The inference
systems of both rewriting logic and the definite fragment of ⇢Log we consider here
provide the entailment relation that satisfies those properties.

Hence, the goal is to define an entailment system mapping � from rewriting
logic to ⇢Log such that the conservativity theorem holds. This theorem, formulated
at the end of this section, states that a sequent is provable in rewriting logic with
respect to a rewrite theory i↵ the image of the sequent under � is provable in ⇢Log
with respect to a program obtained from the rewrite theory by �.

7

M. Ayala-Rinc

´

on, B. Dundua, T. Kutsia, M. Marin

Hence, we start defining � for a rewrite theory R F,E, L,R . We assume
that F is split into five disjoint countable sets of symbols F

F

, F
V

, F
S

, F
L

, and F
⇢

,
such that � for rewriting logic function symbols, variables, basic sorts, and labels
is defined as follows:

For each f F we have a symbol f F
F

, and

� f f.

For each x V there is a symbol c
x

F
V

, and

� x rlv c

x

,

where rlv is a function symbol from F
⇢

. Hence, rewriting logic variables are
mapped to ⇢Log ground terms tagged by the function symbol rlv .

For each rewriting logic basic sort a there is a symbol a F
S

, and

� a rls a ,

where rls is a function symbol from F
⇢

. Hence, rewriting logic sort symbols
are mapped to ⇢Log ground terms tagged by the function symbol rls.

For each l L there is a symbol l F
L

, and

� l l.

The symbols from F
⇢

will be also used in ⇢Log programs below.

Since ⇢Log is unsorted, we need to encode sort definitions and the subsort rela-
tion explicitly as clauses. This is done in the following way:

For each pair of basic sorts a, b, related by the subsort relation , � gives a
clause

subsort basic :: rls a rls b .

Then the subsort relation is defined as follows:

subsort :: rls x rls x .

subsort :: rls x rls y if

subsort basic :: rls x rls z , subsort :: rls z rls y .

For each function symbol f : a1 a

n

b, � gives a clause

sort def :: f x1, . . . , xn rls b if

sort :: x1 rls a1 , . . . , sort :: x
n

rls a

n

,

where the strategy sort is defined as

sort :: x rls y if

sort def :: x rls z , subsort :: rls z rls y .

8

M. Ayala-Rinc

´

on, B. Dundua, T. Kutsia, M. Marin

We define a strategy is sorted for terms:

is sorted :: x true if sort :: x rls y ,

where true is a function symbol. This clause says that a term is sorted if it
has a sort.

Further, � is extended in a straightforward way to a mapping from T F,V -
terms, equations, and substitutions into T F ,V -terms, equations, and individual
variable substitutions, respectively We define � t � t .

For the set of rewrite rules R, the mapping � is defined as follows:

� R : � rule rule R

rwl choice :: x y if choice � l1 , . . . ,� l

m

:: x y .

where l1, . . . , lm are all the labels of the rules in R, and � for the rules is defined
below.

Before saying what the image of a rule l : t0 r0 if t1 r1 t

n

r

n

under� is, we assume that� l l, � t

i

t

i

, and� r

i

r

i

for 0 i n.
Besides, let x1, . . . , xm be all rewriting logic variables in r0 and for each 1 i m,
let c

xi be the corresponding symbol from F
V

. Then, by the definition of �, r0

contains rlv c

xi in place of x
i

. Let c1, . . . , cm be symbols from F
⇢

that are fresh in
the context, and denote by r0 the term obtained from r0 by replacing each rlv c

xi ,
1 i m, by c

i

. Then:

� l : t0 r0 if t1 r1 t

n

r

n

:

l :: y0 c1 s1, . . . , cm s

m

, r0 if

match :: t0 y0 z

�

0 ,

apply subst z

�

0 :: t1 t1, apply subst z

�

0 :: r1 r1,

rwl inf :: t1 y1,

match :: r1 y1 z

�

1 ,

apply subst z

�

0 , z
�

1 :: t2 t2, apply subst z

�

0 , z
�

1 :: r2 r2,

. . . ,

rwl inf :: t
n

y

n

,

match :: r
n

y

n

z

�

n

,

apply subst z

�

0 , . . . , z
�

n

:: rlv c

x1 s1,

. . . ,

apply subst z

�

0 , . . . , z
�

n

:: rlv c

xm s

m

,

where is a function symbol from F
⇢

, used to model replacement pairs. Obviously,
if r0 is a ground term, then the sequence c1 rlv c

x1 , . . . , c

n

rlv c

xn is empty
and r0 r0. rwl inf is the strategy that corresponds to the inference in rewriting
logic and is defined below.

The translation of r0 into the sequence c1 rlv c

x1 , . . . , c

n

rlv c

xn , r0 is a
trick that will play its role with the Replacement inference rule, where the instances
of variables in the right hand side of a rule are reduced. The intuition behind this

9

M. Ayala-Rinc

´

on, B. Dundua, T. Kutsia, M. Marin

sequence is similar to the let construct in programming, and below (in the definition
of the Replacement Rule) we will define a strategy that has a similar e↵ect.

So far we have not taken into account the equational part of rewrite theories, i.e.,
the set E. Its translation can be dealt with in various ways. For instance, we can
assume that it is incorporated into the matching mechanism of ⇢Log as a matching
algorithm modulo E. This approach is feasible when matching modulo E is decidable
and finitary. Or, if E induces a convergent rewrite system, then its image under �
can be a set of ⇢Log rules, obtained in the similar way as � R , but grouped under
the name of one strategy (e.g., reduce by equalities) and in the inference step (i.e., in
the strategy rwl inf below) the terms before and after reduction by inference rules
are brought to the normal form with respect to the strategy reduce by equalities.
One can also consider a mixed variant (which is implemented in Maude), where
matching modulo some equational theories are built-in, and the remaining set of
equalities is convergent.

Basically, with this we have � defined for rewrite theories. In whatever way one
deals with the rewriting logic equalities, we always need syntactic matching for the
expressions translated in ⇢Log. Since the rewriting logic variables are mapped to
⇢Log ground terms, matching should be implemented explicitly:

match :: x y x if

change tag rlv temp tag :: y z,

nf first one finish, solved equation, variable elim, decomposition ::

mp x z , subst subst z ,

change tag temp tag rlv :: subst z subst x .

The code above corresponds to the variant of matching algorithm when variables
in the right hand side of the matching problem are replaced by temporary constants,
then the matching rules are fired (first applicable, as long as possible), and in
the computed matcher the introduced constants are mapped back to the original
variables they replaced. The constructor function symbol for the matching problem
is mp, and for the substitution subst.

The strategy finish below says that if the matching problem is empty, then
the computed substitution should be returned. This corresponds to the success of
matching. The other three strategies implement the standard matching rules.

finish :: mp, x x.

solved equation :: mp x x, x , subst y mp x , subst y .

variable elim :: mp rlv x y, x , subst y

mp x1 , subst rlv x y, y1 if

apply subst rlv x y :: mp x mp x1 ,

apply subst rlv x y :: subst y subst y1 .

decomposition :: mp F x1 F x2 , y , x mp z, y , x if

zip :: F x1 , F x2 z.

The remaining strategies are auxiliary ones used in the rules or in the algorithm

10

M. Ayala-Rinc

´

on, B. Dundua, T. Kutsia, M. Marin

control above:

zip : first one zip nonempty , zip empty .

zip nonempty :: F x1, x1 , F x2, x2 x1 x2, y if

zip :: F x1 , F x2 y.

zip empty :: F, F ✏.

apply subst x : first one apply subst basic x , apply subst rec x .

apply subst basic x, rlv x y, y :: rlv x y.

apply subst rec x :: F y F z if map apply subst x :: y z.

change tag F1 F2 :

first one change tag basic F1 F2 , change tag rec F1 F2 .

change tag basic F1 F2 :: F1 x F2 x .

change tag rec F1 F2 :: F y F z if

map change tag F1 F2 :: y z.

One could easily extend this algorithm to work, for instance, with commuta-
tive matching symbols. We would need to add only one rule, called commutative
decomposition:

commutative decomposition :: mp F x1, y1 F x2, y2 , y , x

mp x1 y2, x2 y1, y , x if

is commutative :: F true.

(The strategy is commutative is assumed to be defined for each commutative func-
tion symbol, and it is a part of the translation of commutativity equations from
E.) To make this rule work in the matching algorithm, we will need to replace
the occurrence of decomposition in match above by the choice between commuta-

tive decomposition and decomposition.

In a similar way, one could easily incorporate into ⇢Log equational matching
algorithms in some other common theories, such as associativity, associativity-
commutativity or their combinations with the unit element. (These are theories
for which Maude also provides built-in matching algorithms.)

The final step in the construction of the mapping� is to define it for the inference
rules of rewriting logic. They are translated into a set of ⇢Log as follows:

Reflexivity Rule in ⇢Log:

rwl refl :: x x if is sorted :: x true.

Congruence Rule in ⇢Log:

rwl cong :: X x X y if map rwl inf :: x y.

Replacement Rule in ⇢Log:

rwl repl :: x y if

11

M. Ayala-Rinc

´

on, B. Dundua, T. Kutsia, M. Marin

rwl choice :: x y, z ,

map reduce :: y z,

let z :: z y.

The strategy reduce is defined as

reduce :: x y x z if rwl inf :: y z.

The strategy let is defined as

let z :: x y if first one replace z , id :: x y.

replace z1, x y, z2 :: x y.

replace z :: X x X y if map let z :: x y.

Transitivity Rule in ⇢Log:

rwl trans :: x y if

rwl inf :: x z, rwl inf :: z y.

The main strategy is rwl inf , which encodes the fact that an inference step in
rewriting logic is made by the above mentioned inference rules (and guaranteeing
well-sortedness of the involved terms):

Inference:

rwl inf :: x y if

is sorted :: x true,

choice rwl refl , rwl cong , rwl repl , rwl trans :: x y,

is sorted :: y true.

Hence, we constructed the translation mapping � from a rewriting logic theory
R to the ⇢Log set of definite clauses � R , and translated the inference rules of
rewriting logic into ⇢Log definite clauses as well.

While the clauses for rwl refl , rwl cong , rwl trans directly imitate the behavior
of the corresponding inference rules of rewriting logic (and vice versa), the rwl repl
rule needs more explanation. For this purpose, we read the Replacement inference
on page 3 bottom-up and see how proving the ⇢Log atom rwl repl :: t0� �

r0� # corresponds exactly to proving the rewriting logic sequent t0� r0#

by the Replacement inference, where � and # are substitutions from that rule.

Proving rwl repl :: t0� r0# requires proving atoms in the body of the clause
that defines rwl repl . The first of them (call it A1), with the strategy rwl choice,
corresponds to finding a rule for the rewrite theory: It should be the one that has t0
(or a term that equals t0 modulo the set of equalities � E) in its left hand side, and
has the construction that corresponds to r0 (or a term that is � E -equal to r0) in
its right hand side. The construction consists of (i) a sequence of correspondences
between fresh function symbols and � � -instances of variables of r0 (this sequence
is consumed by y in the clause and consists of terms of the form c

x

i

s

i

), and (ii)
the term r0 which is obtained from r0 by replacing variables by those fresh atoms.

12

M. Ayala-Rinc

´

on, B. Dundua, T. Kutsia, M. Marin

Note that proving A1, if the body of its clause is not empty, requires proving
the � � -instance of that body, that is nothing else than the task of proving the
sequents obtained from the �-instance of the condition of the selected rule with the
label l, i.e., those t

i

� r

i

� sequents in the upper part of the Replacement
inference.

Next atom maps rwl inf on the sequence y, which means that rwl inf :: cx
i

s

i

rhs

i

should be proved for all elements cx
i

s

i

in the sequence. However, due
to the fact that does not appear in the left hand side of rules and c

x

i

’s were fresh,
the rhs

i

’s should have a form c

x

i

u

i

for some u

i

’s. But this corresponds to the
proof of the sequent s

i

u

i

in the Replacement rule.

Finally, the strategy let puts each u

i

in place of cx
i

in r0, obtaining r0� # . It
corresponds to the application of the substitution # to r0 in the Replacement rule.

The following result, called the conservativity theorem, connects deductions in
rewriting logic to those in ⇢Log:

Theorem 4.1 Given a rewrite theory R, a sequent t r is provable in rewrit-

ing logic from R i↵ the atom rwl inf :: � t � r is provable in ⇢Log from

� R .

Proof. (Sketch) First, assume that the equational part of R is empty, i.e., we
have the syntactic equality. We need to show that terms, sorts, subsort relation,
equalities, rules, and inferences of rewriting logic are adequately represented in
⇢Log, but it follows directly from the construction of �. For instance, it can be
immediately seen that b is a sort of a term t of rewriting logic i↵ sort :: � t � b

is proved in ⇢Log. The specification of matching in ⇢Log directly follows the rules
of the algorithm. Based on the adequacy of sortedness and matching, we can see
that adequacy is straightforward for the reflexivity, congruence, and transitivity
inference rules. For the replacement rule, the proof is based on the reasoning above
for rwl repl .

As for non-empty equational theories, the result holds when equational matching
can be e↵ectively represented in ⇢Log. Essentially, it means that a terminating
finitary algorithm should be available. In this case, we can reason similarly to the
case when matching is syntactic.

Example 4.2 At the end of this section, we see how the rewriting logic theory from
Example 2.1 is translated into ⇢Log clauses. (The general part such as commutative
matching and inference rules are the same as above.)

l1 :: z a s, a if

match :: rlv a

x

0 z z

�

,

apply subst z

� :: rlv a

x

s.

l2 :: z a1 s1, a2 s2, suc suc a1 a2 if

match :: suc rlv a

x

suc rlv a

y

z z

�

,

apply subst z

� :: rlv a

x

s1,

apply subst z

� :: rlv a

y

s2.

l3 :: z a s, a if

match :: rev rlv a

x

z z

�

,

13

M. Ayala-Rinc

´

on, B. Dundua, T. Kutsia, M. Marin

apply subst z

� :: rlv a

x

s.

l4 :: z a1 s1, a2 s2, rev a2 rev a1 if

match :: rev rlv a

x

rlv a

y

z z

�

,

apply subst z

� :: rlv a

x

s1,

apply subst z

� :: rlv a

y

s2.

subsort basic :: rls a

N

rls a

T

.

sort def :: x1 x2 rls a

N

if

sort :: x1 rls a

N

,

sort :: x2 rls a

N

.

sort def :: x1 x2 rls a

T

if

sort :: x1 rls a

T

,

sort :: x2 rls a

T

.

sort def :: suc x rls a

N

if

sort :: x rls a

N

.

sort def :: rev x rls a

T

if

sort :: x a

T

.

5 Conclusion

We showed how rewriting logic (RWL) and ⇢Log calculus can be related, defining
a fragment of ⇢Log, into which rewriting logic can be encoded by a provability pre-
serving mapping. The mapping, denoted by �, actually, relates entailment systems
of these two formalisms. Given a theory of rewriting logic, consisting of an alphabet,
equations, labels and rewrite rule, � maps

each RWL constant to a constant in the language of ⇢Log,

each RWL variable to a ground ⇢Log term, whose head indicates that it is an
encoding of an RWL variable and the argument is a constant corresponding to
the variable,

each RWL basic sort to a ground ⇢Log term, whose head indicates that it is
an encoding of an RWL sort and the argument is a constant corresponding to
the sort,

each RWL rule label into a ⇢Log constant,

RWL sort definitions, subsort relation, rewrite rules, inference rules, inference
control, and the matching mechanism into ⇢Log clauses.

RWL sequents are mapped into ⇢Log atoms.

RWL equations are either considered to be represented in the implementation
of equational matching of ⇢Log, or they are translated as rules if they induce a
convergent rewrite system. Those rules then serve for normalization of terms before
and after reduction. A mixed approach is also possible.

The range of � is the definite (negation-free) fragment of ⇢Log, but the rich
strategy language of this formalism helps to imitate some kind of behavior which is

14

M. Ayala-Rinc

´

on, B. Dundua, T. Kutsia, M. Marin

usually modeled with the help of negation-as-failure (or the cut) in logic program-
ming. An example of such a strategy is first one, which stops evaluation after one
answer of the first applicable strategy is computed.

The important property of the mapping � is that it is conservative: provability
of a rewriting logic sequent from a rewrite theory is equivalent to the provability
of the �-image of the sequent from an �-image of the theory in ⇢Log. It shows
the expressive power of ⇢Log: This formalism, like rewriting logic, can be used as a
logical and semantic framework.

Acknowledgments

This research has been partially supported by the Brazilian National Council for Sci-
entific and Technological Development CNPq under grant CsF/BJT 401319/2014-8,
by Rustaveli National Science Foundation under the grants FR/508/4-120/14 and
YS15 2.1.2 70, and by the Austrian Science Fund (FWF) under the project P 28789-
N32.

References

[1] Franz Baader and Wayne Snyder. Unification theory. In Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning, pages 445–532. Elsevier BV., 2001.

[2] Walid Belkhir, Alain Giorgetti, and Michel Lenczner. A symbolic transformation language and its
application to a multiscale method. J. Symb. Comput., 65:49–78, 2014.

[3] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José Meseguer,
and Carolyn L. Talcott, editors. All About Maude - A High-Performance Logical Framework, How to
Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes in Computer
Science. Springer, 2007.

[4] Jorge Coelho, Besik Dundua, Mário Florido, and Temur Kutsia. A rule-based approach to XML
processing and Web reasoning. In Pascal Hitzler and Thomas Lukasiewicz, editors, RR 2010, volume
6333 of LNCS, pages 164–172. Springer, 2010.

[5] Besik Dundua. Programming with Sequence and Context Variables: Foundations and Applications.
PhD thesis, Department of Computer Science, University of Porto, 2014.

[6] Besik Dundua, Temur Kutsia, and Mircea Marin. Strategies in P⇢Log. In Maribel Fernández, editor,
9th Int. Workshop on Reduction Strategies in Rewriting and Programming, WRS 2009, volume 15 of
EPTCS, pages 32–43, 2009.

[7] Besik Dundua, Temur Kutsia, and Klaus Reisenberger-Hagmayer. An overview of P⇢Log. In Yuliya
Lierler and Walid Taha, editors, Practical Aspects of Declarative Languages - 19th International
Symposium, PADL 2017, Paris, France, January 16-17, 2017, Proceedings, volume 10137 of Lecture
Notes in Computer Science, pages 34–49. Springer, 2017.

[8] Joseph A. Goguen and José Meseguer. Order-sorted algebra I: equational deduction for multiple
inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci., 105(2):217–273, 1992.

[9] Temur Kutsia. Solving and Proving in Equational Theories with Sequence Variables and Flexible Arity
Symbols. RISC Report Series 02-09, Research Institute for Symbolic Computation (RISC), University
of Linz, Schloss Hagenberg, 4232 Hagenberg, Austria, May 2002. PhD Thesis.

[10] Temur Kutsia and Mircea Marin. Matching with regular constraints. In Geo↵ Sutcli↵e and Andrei
Voronkov, editors, LPAR, volume 3835 of Lecture Notes in Computer Science, pages 215–229. Springer,
2005.

[11] John W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer, 1987.

[12] Mircea Marin and Temur Kutsia. On the implementation of a rule-based programming system and some
of its applications. In Boris Konev and Renate Schmidt, editors, Proceedings of the 4th International
Workshop on the Implementation of Logics (WIL’03), pages 55–68, Almaty, Kazakhstan, 2003.

[13] Mircea Marin and Temur Kutsia. Foundations of the rule-based system ⇢Log. Journal of Applied
Non-Classical Logics, 16(1-2):151–168, 2006.

15

M. Ayala-Rinc

´

on, B. Dundua, T. Kutsia, M. Marin

[14] Mircea Marin and Florina Piroi. Deduction and Presentation in ⇢Log. ENTCS, 93:161–182, 2004.

[15] Narciso Mart́ı-Oliet and José Meseguer. Rewriting logic as a logical and semantic framework. In
Dov M. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 9, pages 1–87.
Kluwer Academic Publishers, 2002.

[16] Narciso Marti-Oliet, Jose Meseguer, and Alberto Verdejo. A Rewriting Semantics for Maude Strategies.
ENTCS, 238(3):1–18, 2009.

[17] José Meseguer. General logics. Studies in Logic and the Foundations of Mathematics, 129:275–329,
1989.

[18] José Meseguer. Conditioned rewriting logic as a united model of concurrency. Theor. Comput. Sci.,
96(1):73–155, 1992.

[19] Jose Meseguer. Twenty years of rewriting logic. The Journal of Logic and Algebraic Programming,
81(7):721 – 781, 2012.

[20] Phong Nguyen. Meta-mining: a meta-learning framework to support the recommendation, planning
and optimization of data mining workflows. PhD thesis, Department of Computer Science, University
of Geneva, 2015.

16

